Den viste stamme (fra forside) må have siddet fast i det omgivende sediment, da det blev overskredet af gletscheris. Presset fra isen har deformeret stammen, og der er udviklet såkaldte kink-bånd inden for hvilke ved-strukturen er drejet. Som det ses på billedet, er der udviklet kink-bånd i to retninger, a og b, og bevægelsen langs disse er markeret med pile.

Kink-bånd er velkendte fra deformerede bjergarter, og det vides, at sammenpressningsretningen, der resulterede i dannelsen af kink-bånd, ligger som vinkelhalveringslinien i den spidse vinkel mellem kink-båndene a og b. Det vil i dette tilfælde betyde, et den is-deformerede stamme har været udat for et tryk parallelt med stammens længdeudstrækning.

Detalje fra et af kink-båndene overst på stammen.
VARV er jo betegnelsen for noget årligt tilbagevendende, men for redaktionen og for læserne er det helstvis noget, der sker hvert kvartal. Desværre bliver der også mulighed for, at fejl sniger sig ind oftere, end vi synes om; men vi vil - så tæt det er nødvendigt - også rette fejlene igen.

Vi forlod således ikke 1987 med nummer 4 uden fejl. Mest alvorligt var det, at vi helt havde misforstået figur 11 på side 115, derved har forfatteren velvilligt afleveret en forklarende tekst, der er blevet til en lille artikel om Strandforskydningsskurver på side 10 i dette nummer. Tak!

I samme artikel side 114 omtales der 6 pollenanalyser. Disse vigtige analyser var udført af geolog Else Kolstrup - hvilket også var nævnt i manuskriptet til artiklen om Fribredere A, men 'anmutede' for redaktionen. Undskyld!

Der var også - efter moderne opfattelse - kladder med figurteksten på side 117. Problemet her er brugen af ordet 'senglacial' - om det stadigvæk må bruges for tidsnumret for isens afsmelning fra hoveddoldalinien i Midtjylland og til Island, så ved de norske øer og de mellemøstiske randmoræner, - eller om ordet nu udelukkende må anvendes om tidsfænomenet 13.000 - 10.000 Kulstof-14 år før nu. For at være på den sikre side, kan læserne strege ordet 'Senglacial' i figurteksten. Vi håber at kunne belyse problemet i en kommende artikel.

Forsidefoto: Ole Bang Berthelsen.

VARV

Adresse: Tidsskriftet VARV, Geologisk Centralsinstitut, Øster Voldgade 10, 1350 København K. Telefon: 01 11 22 32.

Redaktion: Valdemar Poulsen (ansvarshavende), Agger Berthelsen, Jens Konnerup-Madsen, Svend Pedersen, Steen Sjørring og Sven Laufeld (i Sverige).

Renskrift: Gitte Sjørring

Montage: Svend Pedersen og Steen Sjørring

Repro: Vest-Scan a/s, Esbjerg

Tryk: Johnsen + Johnsen a/s, København

VARV udkommer fire gange årligt. Prisen er 70 kr i abonnement i 1988. Abonnement tegnes ved at indsende beløbet til VARV. Postgiro 9 06 88 80, eller 65 Skr til VARVs svenske postgirokonta 4388-5.

Adresseændringer eller fejl ved bladets levering bedes meddeles Postvæsenet. © 1988 VARV. Eftertryk af tekst og billeder kun efter aftale.

IBERISK PYRIT

af Henrik Stendal

Det spansk-portugisiske pyritbælte dækker et stort område i den sydvestlige del af den Iberiske Halvø. Bællet strækker sig fra nord for Sevilla i Spanien og vestover til Louial nær Atlantorhavskysten i Portugal, en strækning på ca. 250 km - oversvømmende til et areal på ca. 8000 km².

Pyritbællet har 60 miner, men kun en halv såns stykker er i produktion i dag. Derudover kendes mere end 300 mindre pyritforekomster. Malmene består af linser af massiv pyrit (som af og til er kobber-førende), og linserne kan blive op til 3 km lange, 300 meter tykke og 400 meter dybe, som f. eks. i Rio Tinto malmlejemmet. Andre forekomster består af tynde bandede lag af pyrit, kobber-kis, zinkblende og blyglans som f. eks. i Aznalcollar nær ved Sevilla.

Figur 1. Kort over den sydvestlige del af den iberiske halvø med udbredelsen af det "sedimentære-vulkaniske kompleks": pyritbællet.

Figur 7. Et eksempel på Boomer-registrering, der viser en sættekket havbunds topografi, nemlig en asymmetrisk ophøjning af ryggene og hældende mosozoiske lag under havbunden.

Figur 8. Eksempel på side scan sonar registrering fra det samme stykke, som boomer-registreringen viser. Ryggene ses her som lige, parallele linier.
I pyritbøllet findes følgende malntyper:

a) massiv pyritmalm
b) bändet pyrit-zinkblende-blyglim malm, også kaldet kompleks pyritmalm
c) bändet kobber-kobberkobber-kobberkobbermalm
d) steunkværmalm med pyrit og kobberkis
e) guldf og sølvfrige gossan-malrne.

Den massive pyritmalm indeholder typisk 45-48 % svovl (S), 40-43 % jern (Fe), 0.6-1.0 % kobber (Cu), 0.5-1.0 % bly (Pb), 1.0-2.5 % zink (Zn), 0.3-0.4 % arsen (As), 0.5-1.2 g/t guldf (Au) og 20-30 g/t sølv (Ag). Af og til findes også lidt baryt sammen med denne malm. Pyritmalmen er ofte meget finkornet og andre mineraler kan derfor være meget vanskelige at bestemme. Pyritmalmen findes bl.a. i Rio Tinto, Tharsis og i La Zarza.

Længs vestkysten af Bornholm ses indtil flere odder og pynter, hvis eksistens alene skyldes tilstedeværelsen af den hårde sammenkittede 'Hasle Sandsten'. Denne sandsten fortsætter ud under havbunden og danner rev (Fig. 3), der kan følges over en kilometer ud i vandet. På helt samme måde fortsætter andre mezozoiske lag ud under havbunden, hvor de hårde dele opbygger rev og undersøiske rygge.

På grundlag af eksisterende nokort og ekkolod-registreringer er dybdesforholdene syd og vest for Bornholm blevet kortlagt (Fig. 4), og efter kurvebilledet at domme, kan havbunden opdeles i 3 områder nemlig de 2 områder vest og sydøst for Bornholm (mørkeblå) og Rønne Banke (lyseblå og grønne områder).

I områderne vest og sydøst for Bornholm er vanddybderne store (25-50 m), havbunden er meget jævn og består af tykke kvartære aflejringer. På Rønne Bank er havdybden ringe (10-25 m), og de kvartære aflejringer er meget tynde. De ujævne bund på banke skyldes et tætliggende system af nordvest-sydøst orienterede render og mellemliggende grunde (Fig. 4). Grundene består af mezozoiske lag (Fig. 5), der er hårde, og som står frem som rygge på havbunden (Fig. 6).

På ekkolod- og boomer-diagrammerne ses ryggene som savtakkede former (Fig. 7). De er skævt opbyggede med en stel eller lodret side og en bred, lavhældende side. Ryggene har en højde på mellem 1 og 8 meter over bunden, og de ligger tit samlede i båler, som det ses på side scan sonar diagrammerne (Fig. 8).

Figur 2. Ca. 10 cm bredt hårdslykke af massiv bändet kompleks malm. De gråle bånd er pyrit, brunlige farver er zinkblende og blågrå skær er blyglim.
Foto: Ole Bang Berthelsen.

Den bändede eller kompleks pyritmalm har et lavere sulfidendhold, højere bly og zinkvænder og ofte - udover arsen - også et indhold af antimon (Sb), kvikselv (Hg), sølv (Ag) og tin (Sn). Denne malmtype er også meget finkornet, men på grund af den udprægede bånding er det muligt at skelne de enkelte mineralfærger. Eksempler på denne malmtype findes i Aznalcollar (Spanien) og i Neves Corvo (Portugal).

Den bändede kobberholdige pyritmalm er i sammenligning med pyritmalmen meget rig på kobber (8 %) og sølv (44 g/t), lav i indholdet af zink (0.4 %) og helt uden bly. Denne type malm findes i Neves Corvo.

HÅRDE OG BLØDE LAG

På grund af hævningerne, der flere steder overstiger 1000 meter, blev de mesozoiske lag hurtigt nederødter, og denne nedbrydning sker stadigvæk, hvilket bl.a. ses i de mange kystkinter langs syd- og vestkysten af Bornholm. Nedbrydningen af bløde lag sker hurtigt, og det medfører, at kystlinien langs Bornholm er meget ujævnt. Der hvor der er bløde lag, findes bugter, og hvor hårde lag kommer til øje ses adder og pynter.

Figur 4. De topografiske forhold i formandet syd og vest for Bornholm. Dybe områder (over 30 m) er vist med mørkeblå, mellem 20 og 30 m er farven lyseblå. De gældende kystnære områder er mellem 0 og 12,5 meter dybe. Ronne Banke træder tydeligt frem.

Figur 3. Aznaicollar åbne brud med ca. 20 meter massiv malin af den båndede type. Mainen udgør den mørke zone under lastblæren.

Stokværk-malmen med pyrit og kobberkis siddes som årer i stærkt omdannede vulkanske bjergarter og ofte under den massive pyritomal. Arener er fra 1-20 cm tykke. Sammen med disse årer er kobberkis fordel i de samme bjergarter, som stokværket befinder sig i. Denne type malin er i dag den vigtigste kobbermalin i Rio Tinto-området, der er et af Vesteuropas vigtigste kobberproducenter.

Guldfølgende gossanomalie fra Rio Tinto indeholder 2 g/t guld og 50 g/t sølv. Guldet og sølv fra gossan udvides kemisk med en cyanid-"oplukning". Sammen med guld og sølv fra de andre malmynter produceres der fra Rio Tinto-området hvert år 4 tons guld og 45 tons sølv.

Som besøgt er malmdannelsen sket på havbunden - maske i 2 km's dybye - i forbindelse med den aktive vulkanske periode, der gav anledning til dannelsen af tuf-bjergarterne. Sådanne malme, der er dannet samtidig med de omgivende bjergarter, kaldes synerdimentiere eller syngenetiske. Malmene danner ved at metalerne transporteres i vandlige oplosninger (hydrotermale oplosninger), som stiger op til havbunden - denne proces kaldes exhalativ. Derfor hedder denne type malme også "marine exhalativ-sedimentære malme" eller "vulkanogen-sedimentære forekomster", som er dannet synerdimentiært. Malmene i stokværk-

28

Metallerne stammer fra de underliggende bjergarter. På grund af varme, f.eks., fra den vulkanske aktivitet, begynder vandet i bjergarterne at cirkulere. Under cirkulation til 5-10 km's dybde opskærer vandet metallerne i de gennemstrømmede bjergarter og transporterer metallerne op til havbunden, hvor de udfaldes og danner malmeforekomster. Også i dag kan man iagtteke exhalative strømninger ud på havbunden, som regel i begrænsede bassiner, f.eks., fra Rode Havet (Atlantic I'I)-dybet, og fra Stillehavet (East Pacific Rise). Metalafsatningerne ville altid bruge sig i luvninger (depressioner) på havbunden, da de metalførende hydrotermale oplosninger er tagnet end det omgivende havvand. Disse afsetningssteder er med til at give malmegeometernes deres lineægtige form og lagbundne struktur og placering, som stadigvæk kan erindre trods påvirkningerne fra den hercyniske foldning.

Det spansk-portugisiske pyritbaltet er en af Europas mest betydningsfulde metalprovinser samtidig med, at det er et af Europas ældste mineområder. I oldtiden blev kun den forvirrede malm (gossan), som er en limonitmalm (jernoxid) systemet af i andre bjergarter, men efter deres dannede, hvorfor malmen kaldes epigenetiske malme. Stokværk-zonen betrægtes som en tilførselskanal for de massive pyritlåger, der er knyttet til bestemte lag.

overfladeformede. I Mesozoisk tid (fra 230 til 65 millioner år siden) udgjorde Renne Graven vest for Bornholm (se VARV 1985 - 1) og mange andre "blokke" ved Bornholm et kraftigt indyrkningsspor, hvor der blev aflejet store mængder af sedimenter, flere steder mængder på over 4000 meter. Mange af disse sedimenter blev med tiden hårde - enten fordi de blev presset sammen af de ovenliggende lag og/eller fordi sedimenterne blev kitted sammen af mineraludfaldninger fra vandet. Senere i begyndelsen af Tertiær - blev de mesozoiske lag udsat for tryk, hvilket ses af forskningerne, folder og store havninger, se Fig. 2.
UNDERSØJSKE RYGGE
VEST FOR BORNHOLM
Af Niels Erik Hamann

Denne artikel er den første i en række af artikler om den geologiske opbygning sammensætning og dannelse af de mesozoiske lag i havet vest for Bornholm.

Siden 1983 har Fredningsstyrelsen, senere ændret til Skov- og Naturstyrelsen ved kontoret for Havbundsundersøgelser foretaget en seismisk undersøgelse samt prøveindsamling i farvandet vest og syd for Bornholm i forbindelse med den aktivisable kortlægning af råstoffer på havbunden i de indre danske farvande.

Figur 1. Undersøgelsesområdet syd og vest for Bornholm. De kræftige linjer angiver placeringen af de seismiske profiler.

I et 620 km² stort område vest og syd for Bornholm (Fig. 1) er der sejlet ca. 745 km seismiske linjer, hvor ekkoled, side scan sonar, pinger og boomer har været anvendt (se herom i VARV 1984-1), og endvidere er der optaget mere end 300 prøver fra havbunden til støtte for den geologiske tolkning.

Ved den geologiske kortlægning opdager man ofte, at den strukturelle opbygning af undergrundens bjergarter ’slår igennem’ i de yngre lag, så det kan være gamle lags beliggenhed, der præger overladens former. Dette er særlig tydeligt på Bornholm (samt i havet vest for), hvor undergrundens lag kun er dækket af tynde yngre lag, der endog mangler stedvis.

I farvandet vest og syd for Bornholm er de mesozoiske lag blottede i store områder, og de har en altdominerende betydning for udfømmingen af havbundens

Figur 5. Vue over et af malmbrydningsområderne i Rio Tinto set fra en af de opsillede udsigspladser.

Figur 6. Et af malmbrydningsområderne i Rio Tinto. Øverst ses den karakteristiske rustede ’gossen’.
samt den underliggende cementationszone med kobber, bly, zink, sølv og guld brutet. Den dag i dag er gossan-malmen stadigvæk interessant på grund af indholdet af guld og sølv.

Denne subduktionsproces og opsmeltning har foregået i de sidst 4 milliarder år på forskellige steder af Jorden. Gennem de sidst 200 millioner år har subduktionen foregået rundt om Stillehavet, men tidligere har subduktionen foregået alle mulige andre steder på Jorden. Og engang har der også foregået subduktion under Bornholm.

Granit, gnejs og migmatit
I grundfjeldsområder ser man ofte de tre bjergarter granit, gnejs og migmatit sammen. Gnejen kan ofte være homogen og mindre noget om granit, men i modsætning til granitten har den en struktur, idet f.eks. de mørke mineraler er orienteret parallelt. Denne paralleloorientering af mineraler (foliation/liniation) opstår i forbindelse med regionalmetamorfose under en bjergkædedannelsen, hvor oprindelige magmatiske bjergarter underkastes høje temperaturer (200 - 600°C) og et retningsbestemt tryk. Udgangsmaterialet for gnejsen kan også være en heterogen bjergartsekkvens, i så tilfælde får man en bandet gnejs.

Migmatit dannes ud fra gnejser, når temperaturen bliver så høj, at gnejsen begynder at smelte op. Det opsmoltede materiale har en granitisits sammensætning og resultatet bliver en blanding mellem en metamorf (gnejs) og en magmatisk bjergart (granit).

hjælp af seismiske bestemmelser af jordskælvscæntrene (hypocentre) har man kunnet påvise, at nedrykningsen af gammel oceanbund sker helt ned til 700 km dybde. Det er både oceanbund og den 100 km tykke lithosphære, der befinder sig under skorpen, der synker ned. Under nedrykningsen dannes der jordskælv i lithosphären og i oceanbunden, og disse jordskælv ophører i 700 km dybde, og definerer, det vi kaller Benioff-zonen. Når der kun dannes jordskælv i den nedrykkede lithosphære - og ikke i den omdrejede kappe - så skyldes det, at lithosphären er kold og stiv, medens kappen er varm og blod.

Figur 7. Tyndbilledet af dór. De store grønne og gullige korn er hornblende (Amfiboler), medens de hvide korn er feldspater og kvarts.

Geofysiske undersøgelser har vist, at de andesitiske vulkaner nu befinder sig 150-200 km over den nedrykkede oceanbund, eller den subducerede oceanbund, som den også kaldes. Ved at udsætte prøver af oceanbundens basalt for høj tryk og temperatur i laboratoriet viser det sig, at der dannes smelter med andesitisk sammensætning ved tryk svarende til 150 km dybde. At oceanbunden smelter skyldes, at den omdrejede kappe er varm og derfor opsmelter oceanbunden. Efter at en del andesitisk smelte er blevet dannet, begynder den at stige op mod overfladen. Forst stiger den op gennem den varme kappe, og der foregår derfor ingen kristallisation og fraktionering. Når den kommer højere op bliver de omdrejede bjergarter koldere, mineraler bliver dannet, og der kan nu foregå en fraktionering. Nogle af de andesitiske magmaser bliver fraktioneret, medens andre stiger så hurtigt op, at der ikke kan nå at foregå fraktionering.

Figur 8. Skitse, der viser cirkulationsmodellen for dannelse af den massive sulfidalm. Det varme vand oplever metalfornydelserne i 5-10 km's dybde og afsætter dem i sikoværkszone eller på havbunden senere hen.

Figur 9. Landskabet bærer præg af de mange års mindrift, specielt i Rio Tinto området, hvor dybe huller og dybner af rustede gossan-bjergarter ligger mellem de berørte og smukke hvide andalusiske landsbyer.
STRANDFOR – SKYDNINGSKURVER

Af Erik Maagard Jakobsen

Der har i tegningen, fig. 11 på side 115, indmeget sig en beklagelig fejl, idet den fuldt optroknede kurve med betegnelsen 'landnivea' ikke repræsenterer landniveau, men strandforskydningkurven for Præste Fjord. Den stiplede kurve viser den nye fortolkede kurve, der er fremstillet på baggrund af datamaterialet fra Præste Fjord samt på grundlag af nye informationer fra Friðreði Á.

Figur 6. Tyndstiltbilledet af granitt, dybbjergarten såvarende til rhyolith. Det grå-brunt korn nederst er kvarts, mens det 'skakbræt'-mængede korn i midten er alkalifeldspar (mikroklin). Øverst ses korn af plagioklas.

Andesit og granits dannelse
Andesitiske magmater dannes ved opsmeltning af oceanbundens skorpe, der sammen med lithospheren er blevet subduceret ned under kontinenterne. Oceanbundens skorpe, der er ca. 6 km tyk, dannes ved de midtøstiske rynge, der strækker sig rundt om hele Jorden. Jordens kappe flyder rundt og danner en konvektionsstrøm. Hvor denne strøm stiger op, dannes der basaltsmelte, idet kappen undergår en opsmeltning på grund af trykkafastningen. Basaltsmelen trænger ud på oceanbunden og opbygger den øverste del af skorpen. På grund af konvektionen i kappen fores oceanbunden væk fra ryggen, hvor den er dannet. Denne bevægelse er langsom, hastigheden er ca. 10 cm om året. Det varer således 10 millioner år for oceanbunden for at bevæge sig 100 km.

I Atlanterhavet sker der bare det, at oceanbunden bevæger sig udad fra ryggen, samtidig med at kontinenterne flytter sig. I Stillehavet sker der noget helt andet: Her begynder den 50-100 millioner år gamle oceanbund at synke ned. Ved

Som regel er det plagioklаз, der udkrystalliserer først, og når en del plagioklas er sunket ud af magmak, har dette ændret sig i kemisk sammensætning og er blevet til et dacitisk magma.

Udbredelsen af graniter
Kontinenterne består for det meste af granitisk bjergarter. Den mest udbredte granitoide bjergart er granodiorit, der f.eks. kan ses ved Rønne. Granitjerne danner kernerne, eller de oprindelige dele af kontinenterne, der kaldes for grundfjeld. Det granitiske grundfjeld er for det meste fra 3 til 1/2 milliard år gamle. Kontinenterne er vokset langsamt i løbet af Jordens udvikling, og der dannes i dag stadig granit. I løbet af de sidste 200 millioner år er der blevet dannet graniter i et område rundt om Stillehavet, d.v.s. i det vestlige USA og re mångde is, hvilket medfører en signign i havniveauet. Omvendt bindes der mere is i gletscherne, når klimaet bliver koldere.

Ved en sammenligning mellem de forskellige strandforsyndningskurver fra Danmark og Sydsverige ses et vist sammenfald mellem de tidspunkter, de enkelte transgressionsfaser falder på. Der kan dog ikke foretages en helt entydig korrelation mellem alle de registrerede faser. En af forklaringerne herpå kan være
forskellige metoder ved korrigeringen af kulstof-14 dateringerne. Også forskel i
det materiale, der dateres, spiller ind.

En forklaring på de registrerede forskelle i strandforskydningskurverne kan være,
at der er sket lokale ændringer i landhævningen. Disse ændringer skyldes
nødtektoniske bevægelser langs gamle forslystninger. Undersøgelsens i Danmark
er opdelt i større og mindre blokke, afskuelset af forskningerne. Det kan være
forskellig bevægelse af disse blokke, der medfører lokale ændringer i høvningstakten.

Når man sammenligner f. eks. kurven fra Trundholm Mose i Nordvestsjælland
med kurven fra Vedbæk (nord for København) og ser på afstanden mellem kur-
verne til forskellig tid, ser man, at omkring 5.000 f.Kr. er der en niveauforskel
på 5 m, omkring 4.000 f.Kr. en niveauforskell på 4 m, og omkring 3.000 f.Kr.
er der sammenfald i niveauerne. Dette viser, at Vedbæk-området på de 2.000
år har hævet sig ca. 6 m mere end Trundholm-området. Vedbæk-området ligger
på en blot i undervinden ved Alnarpdalen i nord og Sønderodalen i syd, og
et på den fennoskandiske randzone. Ud fra kurverne ses det, at bevægelserne
især er knyttet til tidsrummet 5.000-3.000 f.Kr., idet kurverne både før og ef-
ther dette tidsrumme stort set er parallele. Det er dog vanskeligt at udtale sig om
tidsrummet efter 2.000 f.Kr.

Kunskaben er at der i Stenalderen har været betydelige bevægelser af jord-
skopen - helt op til 6 meter, disse bevægelser kan være sket i spring, mæske i
forbindelse med jordskælv. De tektoniske bevægelser i Danmarks undersøgelse
mellem 5.000 og 3.000 f.Kr. giver det ekstra moment, at en regression i et om-
råde ikke behøver at betyde en sænkning af havniveau, det kan lige så godt væ-
re en tektonisk hævning af området.

Figur 3: Kurver der viser landhæv-
ningen i mårne i de sidste ca. 8000 år.
(Efter E. L. Merz, 1924). Noget af de lokaliteter, der er nævnt i teksten, er indsat på kortet: V = Ved-
bæk, S = Storebælt, T = Trundholm Mose, B = Barsebæk og F = Fribroede A.

Figur 4: Tyndslibsåltet af en rød østera-kvartsforjør (en rhyolit). Der ses et meget stort krystall af kvarts.

På Bornholm findes mest granitter, men andre steder kan man også finde de bjergarter, granit er dannet ud af. De findes dels som intrusive bjergarter og dels som lavaer. De intrusive bjergarter er dannet ved, at et magma under høj tryk trænger ind og storkræer dybt nede i Jordens skorpe. Intrusioner dannet af granit kan være meget store. Den længste granitintrusion er 2000 km lang, men oftest er granitintrusioner 5 x 10 km i areal og mellem 2-6 km i højden. Det er faktisk et helt hav af magma, der storkræer og dannet en sådan intrusion.

Granit tilhører en bjergartsserie, hvis lavaer har følgende navne:
- andesit - dacit - rhyolit
og de tilsvarende intrusive bjergarter kaldes:
- diorit - granodiorit - granit

Andesitserien er den mest primitive af disse bjergarter. Det andesitiske magma er, som vi skal se, dannet i Jordens subduktionszoner. Dacitten er dannet ved fjernelse af krystaller (fraktionering) fra andesitten, og granitten ved fraktionering af dacitten.

Fraktionering er en simpel proces, der finder sted i de fleste magmæer, og kan forklares på følgende måde:
Andesitiske magmæer dannes oprindeligt i ca. 150 km dybde ved opsmeltning af oceanbunden, der er subducet (glidelavet ned) i denne store dybde. Magmæet stiger efter sin dannelse og mod overfladen, fordi det er lettere end den omgivende kappe. Den øverste del af kontinenterne er net koldt i forhold til andesitmagmaet, - andesitmagmaet har en temperatur på omkring 1500°C, medens konti-

TRÆER PÅ NORDPOLEN

Af Ole Bennike

Som nævnt i VARV 1986-1 voksede der for ca. 2 millioner år siden træer ved Kap København i det nordligste Grønland. Kap København ligger blot 800 km fra Nordpolen, i Peary Land, der er Jordens nordligste landområde.

Resten af træerne findes i den øverste del af Kap København Formationen, i afdrejninger af gråhvidt, velsorteret kvarsand med lejlighedsvisse lag af tungsand, og nu og da i tilknytning til lag med skaller af marine muslinger. Ved det er meget velbevaret og stadigvæk elastisk. Der er ingen steder fundet træer stående på roden, hver træstamme er set i sedimenterne, ligger de ned og følger lagdelingen - de er afløst som drivemørt. Som regel er træerne erosioneret frem og ligger på overfladen af Kap København Formationen. Træerne har været udsat for forskellig grader af erosion under deres transport fra voksesedet til afløjlingsstedet: normalt mangler grene og bark fuldstændigt, kun selve stammen med de
Granit

af Sven Maaboe

Granit er en lys bjergart. Farven kan være hvidlig, lys grå eller rød. Den findes over hele Skandinavien, og kendes i Danmark især fra fersken Bornholm. Som de fleste andre bjergarter består granit af flere mineraler, som regel 4-5, nemlig: plagiooklas (CaAl₂Si₂O₈-NaAlSi₃O₈), alkalfeldspat (KAlSi₃O₈), kvarts (SiO₂), biotit (K₂Fe₆(Si₃AlF₂)O₂(OH)₂), og zirkon (ZrSiO₄).

Plagiooklasen er som regel hvid eller grålig, mikrokokklen (alkalfeldspat) er næsten altid rød, medens kvartsen er grålig og glasagtig. Biotitten (mørk grüner) er let at kende, da den oftest danner sorte 'peberkorn' imellem de andre mineraler. Zirkonen kan derimod som regel slet ikke ses med det blotte øje, da kornene er for små, men de kan tydeligt ses i mikroskop.

Figur 1. Den overste halmel af klassifikationsdiagrammerne for magnetiske bjergarter med mindre end 50 % mørke mineraler (se VARV 1985-3). Spidserne af trekanterne svarer til 100 % af det pågældende mineral, mens den modsatende side repræsenterer 0 %. Til venstre ses diagrammet for platometer og til højre diagrammet for vulkaner.

A: alkalfeldspat, Q: kvarts og P: plagiooklas. Udgør mængden af kvarts mindre end 20 % af de lysne mineraler, befinder bjergarten sig mellem 0 %-linien (A-P) og 20 %-linien, der den mellem 20 og 60 % kvarts er den placeret mellem 20 % og 69 % linien. Feldspaternes indbyrdes forhold bestemmer demæst, hvor bjergarten i øvrigt skal placeres. I granit f.eks. udgør alkalfeldspat mere end 35 % af den totale mængde feldspat.
Anmeldelse:

GEOLOGI I AALBORGOMRÅDET
Råstoffer - Fundering - Vandindvinding

Ole Berthelsen (Danmarks Geologiske Undersøgelser). I kommission hos C.A. Reitzels Forlag (København) og Viggo Madsens Boghandler (Aalborg).
Indbundet, 99 sider, pris: 175 kr.

Geologi på tryk er så mange ting - lige fra den indforståede afhandling for specialisten til den bredeste popularisering tilmelbet en stor læserkreds. Men en fremstilling, som i "menneskesprog" skildrer en egens geologi og følger denne op på grundlag for egens evhvervligt med støtte i arkæologiske og historiske kilder er under alle omstændigheder mere sjælden - desværre.

Dr. phil. Ole Berthelsen er med denne prægtvigt helt indlysende den rette efterfølger for Ellen Louise Meitz, som efter et mangeårigt virke ved D.G.U. behøvede at beskrive de geologiske forhold i et række byer. Tiderne ændrer sig, og fortælleren har valgt at udvide feltet ved også at præsentere råstofudnyttelser, funderingsproblemer og vandindvinding i historisk belysning - et hyggeligt valg.

Den ændrede stil kunne rette sig mod mange kommunale aktiviteter, som i stærkt stigende grad kræver kendskab til de lokale geologiske forhold, og idet om egensudviklings afhængighed af naturen må være helt selvfølgelig for beslutninger i fredningsager. Uanset et muligt ansigt er der ikke noget steds i teksten nogen hævet pegefinger. Fremstillingen er helt igennem nægtet - men geologi, mennesker og kultur sidder sammen i en varm helhed, som på bestemt vis forsterkes af en rig palett af illustrationer.

Til hjælp for læseren bringer mange geologiske kort i farver, udsnit af nyere og ældre bykort, og endelig et væld af fotografier af nærmest nostalgisk karakter skildrende et Aalborg, som vil være ukendt for de fleste i dag. Især fotografierne bringer menneske og geologi sammen - f.eks. billedet fra Luftb. tegværk 1904 med tegværksarbejdere og deres mange børn, eller Ramer's knudtefabriker (ældste industrievirksomhed i Nørresundby, grundlagt 1772).

Den geologisk-relaterede virksomhed i området rækker fra Yngre Stensalders filatiliser til vandborring fra i forgår, og i historiens gang har Aalborgområdet set 14 tegværker, 5 cementfabriker og 1 knudtefabrik.

I ældre tid skaffede ærme den fornemde vandmængde året rundt. Men allerede i Middelalderen var forureningen et problem, hvorfor det kunne foreslås, at "man skulle koge vandet 2 gange, derefter smide det ud og drikke så i stedet". Som man ser, har bogen også plads til den anekdotiske stof.

Denne bog er uden videre snak noget for alle geologi-interesserede i det nærøjende, men må efter anmelderens mening appeltere stærkt til alle der, der ønsker at vide noget om det komplicerede spil mellem natur og menneske. Bogen er rigeligt priset (= 7 pakker cigaretter) værd!

En række "bygeologer" af denne art ville tilsammen udgøre en hel Danmarks Geologi for alle, og man må ønske, at Ole Berthelsen fortsætter ad samme vej.

Valdemar Poulsen

Desværre er det ikke muligt at bestemme ved til at eneste. For at nå en nærmere bestemmelse, er andre rester af træsmunde undersøgt. Graven er således be- stemt på grundlag af nogle. Størrelse og form af granne afhænger af vokstfor-

hold og af placeringen på træet. Anatomisk er de mere ensartede. Grannålene fra Kap København kan bestemmes til sortgræn, bl.a. fordi de indeholder to harpikjolkaneler. Som mange af de andre fundne planter fra Kap København Foreningen vokser sortgræn i dag i det nordligt tempererede boreale afdelssevelse i Nordamerika (Fig. 5). Lærken (Fig. 6) derimod, er meget forskel lig fra den lærkeart, der dominerer i Nordamerika i dag, den tilhører en uddødt art. Birken kan ikke bestemmes nærmere, mens thujæn (Fig. 6) på grundlag af blade og kogler kan bestemmes til almindelig thujæ, der i dag vikser vildt i det østlige Nordamerika (Fig. 5).

Man kan undre sig over, at trævækst har været mulig så langt mod nord, hvor polarmitten er 4 måneder lang. For 2 millioner år siden lå Kap København kun ca. en breddegrad (ca. 100 km) sydligere end i dag. Ser man imidlertid på trægrænsen i dag, falder den stort sammen med isothermen (kurven) for 10°C for juli måned. Om vinteren går træerne i dvale, og denne periode er derfor næsten uden betydning for trægrænsens forløb. I det nordøstlige Sibirien, hvor vinterne er specielt kolde, langt koldere end i det træløse Grønland, vokser der således lærekov.

I Nedre Tertiær var kontinenternes fordeling anderledes end i dag, og bjergkar derne var lavere. Denne anderledes geografisk har utvivlsomt påvirket klimaet, og var der et højere kulvæske-indhold i luften - som det antages af flere - kunne der have været en drivhus-effekt. Måske har det også gjort sig gældende i Øvre Tertiær. Et forhøjet kulvæske-indhold i atmosfæren kan også virke direkte ind på planternes vækst, idet de netop gennem fotosynthese bruger kulvæske til at opbygge organisk stof. Det er faktisk antydet, at den forhøjelse af koncentrationen af kulvæske, vi har oplevet i de senere år, bevirker, at træer i visse subalpine områder forøger deres tilväxtstrakte.