

Ses bort fra det splænetage layout og katastrofemanien, må forlaget ønskes til lykke med at have udgivet en faglig og pædagogisk velredigeret bog om jordskælvsbog i bogen HVAD SKETE DER? Der står utroligt meget på de 72 sider.

Asger Berthelsen

Forfattere til artiklerne i dette nummer kan kontaktes på følgende adresser:
Per Christiansen: Zoologisk Museum, Universitetsparken 15, 2100 Kbh. Ø
Asgar Berthelsen og Rikke Bruhn: Geologisk Institut, Øster Voldgade 10, 1350 Kbh. K.
Dorte Gadeberg, Dorthe Lyngby og Peter Jackson: Conset, Refshalevej 147, P.O.Box 1920, 1023 København K.
Henning Kryger Hansen: Geoteknisk Institut, Maglebjergvej 1, 2800 Lyngby.
John Frederiksen: Rambøll, Bredevej 2, 2830 Kirkum.

VARV er udgivet med støtte fra Kulturministeriets bevilling til almenkulturelle tidsskrifter.
Adresse: Tidsskriftet VARV, Geologisk Institut, Øster Voldgade 10, 1350-København K. Telefon: 35 32 24 00, Geologisk Institut. E-mail: SvendP@Geo. Geol. KU. DK

Redaktion: Asger Berthelsen, Bjørn Buchardt, Bjørn Hageskov, Henrik Fougt, Mikkel Hede, Mikael Pedersen og Svend Pedersen (ansvarshav.)

Bestyrelse: Asger Berthelsen, Valdemar Poulsen, Bjørn Hageskov og Svend Pedersen.

Tekstredaktør: Svend Pedersen

Lay-out og grafik: Bjørn Hageskov

Repro og tryk: Levison + Johnsen + Johnsen a/s, København

VARV udkommer fire gange årligt. Prisen er 120 kr. i abonnement for 2000. Abonnement kan tegnes ved at indsende beløbet til VARV, postgiro 9 06 88 80, eller 140 SEK til VARV's svenske postgirokonto: 4388-5, eller 140 NOK til VARV's norske postgiro: 0806 1923234.

Adresseændringer bedes meddelt VARV!
© 1999 VARV. Eftertryk af tekst og billeder kan kun ske efter aftale.

Anmeldelse

Palle Vibe: Jordskælv: Hvad Skete der?
Faglig og pædagogisk redaktion ved Marie-Louise Hammer.

Bogen i Bogen
For knapt 1 år siden udkom en lille rigt illustreret bog, som er udgivet af Gyldendal Uddannelsesk. Titlen ser ud til at være HVAD SKETE DER? Det står i hvert fald med de største bogstaver. Der står ganske vist også Jordskælv, men det står på højkant. På side 1 er tilføjet, at faglig og pædagogisk redaktion er foretaget af Marie-Louise Hammer. Her står i øvrigt KATASTROFER på højkant foran HVAD SKETE DER?

Ved første gennembrud virker bogen meget poppet. Overskrifterne er pyntet op med gyllinge orange penselstræg, tekst i petit er anbragt i lyserøde og grå felter, og der er et sammensurium af sort-hvide fotografier, kort og diagrammer, som er 'livet op' med grå og røde toner. På omslagets inderside (side 73) er dog trykt et flot verdenskort over kontinenterne og oceanbundens højdeforhold - lånt fra en anden af Gyldendals udgivelser: Den Store Danske Encyklopædi (Bind 8, side 280). Et smukt kort med megen information; desværre er det oceaniske spredningsryg nord for Island benævnt MOHORYGGEN. Molo ligger godt nok høj her, men ryngen hedder Mohns Ryg. Den er opkaldt efter den norske meteorolog og geograf Henrik Mohn (1835-1916).

Palle Vibes bog om jordskælv er den første i en påtænkt serie om katastrofer. Og der er katastrofer. Der er til overmål ruttet med orange splatter og røddler, måske i den tro, at det vil holde læseren fanget. Bare det ikke virker modsat og får den fagligt interesserede til at lægge bogen fra sig.
som standser på hver sin side af havneløbet. I den seneste tid er der påbegyndt en betydelig udbygning af havnenforfronten ved Kalvebod Brygge, og forfatterkredsen har med spænding fulgt forundersøgelserne i håb om at få afklaret, om - og i givet fald hvor - dalen skærer sig under havneløbet. Som det fremgår af figur 3, er der stadig en mulighed for, at dalen krydsr havnenforfronten på det sted, hvor vi førstente, det, hvis den følger det forudsagte, helt rette forløb. To af de nye boringer ved havnenforfronten er standset lige under kote -13 uden at have nået kalken. En ældre boring, som er placeret umiddelbart, hvor delens nordbred forventes at ligge, har nået kalken i kote -15. Fremtidige borearbejder vil forhåbentlig vise, om dalen faktisk krydsr havnen.

Rovdinosaurernes fødeindtag og fysiologi - nye fund skaber ny indsigt

Per Christiansen

Rovdinosaurerne hører til blandt de mest berømte dinosaurer. Alle rovdinosaurer tilhører Theropoda ("uhyre-fødder"), et etage udeholdt navn, idet theropodernes fødder faktisk minder en del om fuglenes. Et bedre navn ville have været Ornithopoda ("fugle-fødder"), men dette navn blev desværre allerede i forrige århundrede givet til en gruppe, der tilhører den ende af de to hovedgrupper af dinosaurer, Ornithischia, blot fordi de har 3 fremadrettede tæer på føden - altså lidt fuglelignende, men ikke meget. Særlig udeholdt er det, fordi fuglene (Aves) selv faktisk er en undergruppe af Theropoda! Dinosaurerne er således overhovedet ikke uddøde, men findes meget talrige i den moderne fauna, med omkring 10.000 arter på verdensplan.

Theropoderne, selv uden fugle, var en meget succesfuld gruppe. Allerede midt i Trias, før omkring 235 millioner år siden, levede de første theropoder. De var alle små, og ret primitive af dinosaurer at være, men alle dinosaurer havde en lang række avancerede træk, der holdt gruppen sammen, og anatomic var de mere højudviklede end de fleste dyr, der fandtes både før og samtidig med dem. Den lille Eoraptor fra Argentina, på kun en meter i totalen, er sandsynligvis den tidligst kendte theropod. Da den er ret primitiv, er det ikke sikkert, at det er en rigtig theropod, men den kan være en basal dinosaur, altså en repræsentant fra før splittet imellem de to store hovedgrupper af dinosaurer, Saurischia (rovdyr + sauropodomorfer) og Ornithischia, der alle var planteædere.

En anden primitiv form er den omkring 3 meter lange Herrerasaurus, også fra Argentina, og den lidt mindre Coelophysis fra det sydlige USA (figur 1). Som alle tidlige dinosaurer løb disse former på lange, slanke, muskuløse bagrø, mens forbenene ikke havde med bevægelse at gøre, men formentlig blev brugt til fødeindsamling og lignende.
Medlemmer af mange dinosaurgrupper begyndte senere at gå på alle fire, ofte i forbindelse med at de blev større, dette gælder for eksempel Ceratopsia, Ankylosauria og Sauropoda. Theropoderne derimod forblev tohævede.

Alle senere theropoder - både meget store former som allosaurer, abelisaurer eller tyrannosaurer og små avancerede, meget fugtegennende former som dromaeosaurer (figur 2 og 3) - var i store træk ret ligte de tidlige former, et bevis på det biologisk succesfulde i theropoderens anatomi konstruktion. En lang række karakterer, ofte ret subtle, ændredes dog, men det var ofte træk, der havde at gøre med bytefangst, sansorientering eller fødeindtag. Dette gælder bl.a. for de meget store hoveder hos de store former. De havde meget kraftige kæbemusler og kraftige halse, der også var meget muskuløse, idet de skulle kunne holde til at nedlægge skakten ved Søpavillonen komme til at krydse under dalen næsten vinkelret på dalforløbet. Videre i NV-lig retning tælkes forholdsvis tiden sådan, at dalen først højer af mod nord fra sit retlinede forløb, for siden at grene sig i to (figur 2).

Anlægsarbejdet i forbindelse med Metron på Amager viste, at jordbundsforholdene under Islands Bryggeområdet er anderledes, end vi forventede. Der blev derfor udført supplerende boringer. Disse afslørede en dyb dal, som skærer sig gennem isidtdjørarterne og ned i kalken (figur 3).

I ældre arkiver fandt vi oplysninger, om jordbundsforholdene lidt længere mod sydøst. I to boringer fra 1950'erne blev kalkoverfladen tilsvarende truffet i overraskende stor dybde på en lokalitet tæt sydvest for det sted, hvor Peder Lykkevej munder ud i Amagerfælledvej/Røde Møllemvej (figur 3). Her findes således det sydvestligste punkt i dalen, som hidtil er påvist. Det skal blive spændende i fremtiden at se, hvor langt videre mod sydøst, den fortsetter.

Vi kender endnu ikke alle detaljer omkring den centrale del af dalen. Er det f. eks. en og samme dal, som findes under det centrale København og under Vestamager, eller er der tale om to nogenlunde parallele da...

Det fremgår imidlertid af figur 4, hvor både Carlsbergforkastningen og Rådhuspladsdalen er indtegnet, at de to linjer ikke er helt parallele. Trods dette antager forfatterne, at den flod, som har uderodret Rådhuspladsdalen, har fulgt en svaghedszone omkring en forkastning i kalken.

Figur 2. Den mandalshvile dromeosaur Deinonychus angriver ornithopoden Tenosaurus i midt Kridtidens (120 mio år siden) Nordamerika (tegnet af Michael Skrepnick). Og sådan kendes dromeosaurerne i dag, især efter de to Jurassic Park-film: Som langhenede, avancerede, varmløvede - og skældede. Vores populære forestilling om dem er stærkt influeret af vores holdning til deres udsendelse. Men det vi ser her er helt galt - de havde fjer over hele kroppen! På høj, høst og noget af høsten var det ret primitive, hårlignende fjer, som kendes fra tidligere andre theropoder og tidlige fugle, men på armene hende de rigtige, lange fjer. Ikke bare var dyrere anatomic fugleligtende - de ligne simpelthen fugle.

et stort bytte. Forlemmerne reduceredes kraftigt hos visse grupper, især hos de ret primitive abelisaurer og de meget avancerede tyrannosaurer (figur 1).

Visse grupper udviklede højt specialiserede våben til at nedlægge bytte med. Dromeosaurerne, kendt fra filmene Jurassic Park og The Lost World, hvor formen Deinonychus (fejltagtigt kaldet Velociraptor i filmene) var en af hovedscenene, udviklede meget lange arme med enorme hænder, der var meget fleksible. På hver finger sad en stor, krum klæ, og deres underben og fødder var tilpasset en helt ny form for byttefængst.

Med undtagelse af nogle af de allertidligste former gik alle rovdinosaurer på 3 især - tå nummer 2-4 (figur 1, 2) - mens dromeosaurerne kun gik på to. Anden-tåen var meget specialiseret, med kraftige muskelfæster på knoglerne og enormt stor bevägelighed i ét, og kun ét plan,
nemlig op og ned. Yderst sad en kæmpestor, krum slagteklo, der formentlig blev brugt til at få byttet i stumper og stykker med. Dromaeosaurernes primære våben sad altså ikke i hovedet, men i fødderne, et højest usædvanligt træk for et landrøvdyr.

Deres frygtelige udseende til trods lignede dromaeosaurerne fuglene meget og regnes for fuglernes nærmeste slægtnings (figur 3). Som alle rovdinosaurer havde de hule rørknogler og hvirvler, der tydeligt bar præg af, at et luftseksystem (udposningar der står i forbindelse med lungerne) har været tilstedeværende, ligesom hos fugle. Mange rovdinosaurer havde også ønskebøg og luftsekse i kraniet, og hos dromaeosaurerne er dette også meget fuglelignende. Særdeles fuglelignende er også tre anatomiske træk: Et bagudvendt skamben (pubis), uncinate processer (tværforbindelser) på ribbenene, og en håndrød, der tillod hånden at klappes op imod underarmen (figur 3).

Visse rovdinosaurer var dog nok ikke kødsedere, f.eks. de avancerede og fuglelignende ornithomimusaurer ("strudseglører") og oviraptorosaurer (figur 1). De levede hovedsagelig sidst i Kridt (for 85-65 millioner år siden) i Nordamerika og Asien, og de havde et hornnæb som fuglene. Dette var sandsynligvis udført i uafhængigt af fuglernes næb. Vi ved nemlig, at de tidlige ornithomimusaurer, som *Pelicaninimus* og *Harpyrnis*, havde små tænder. Andre avancerede rovdinosaurer havde også hornnæb, undertiden i kombination med reducerede tænder.

Rovdinosaurernes makroanatomiske formodser kraftigt på, at de var endoterme ("varmbløde") som moderne fugle og pattedyr, en konklusion der understøttes stærkt af knoglehistoriske undersøgelser, hvor knogleres væststørrelse undersøges. Disse viser alle, at rovdinosaurerne, som alle andre dinosaurer, vokset meget hurtigt, og at de havde et primærknolevæv, der var meget lig, i visse træk endog fuldstændig identisk med, det man finder hos nulevende pattedyr og fugle, og meget forskelligt fra krybdyrs.

Hvis rovdinosaurer har været varmbløde, har det naturligvis haft store implikationer for deres økologi og tillige for den eksterne morfologi hos småformer, der ikke kan have været nøgne, som de ellers altid afbildes. Hvis de var nøgne, ville de ikke kunne tænke sig regulere ordentligt, selv i varme klimeer, og det er højest usandsynligt, at de ikke har kunnet det. Visse forskere har da også i årevis hævdet, at vores billede af især
strækninger at stræmme ‘op ad bakke’. Tunneldale kan derfor have et meget uregelmæssigt bundrelief. En anden model kunne være, at dalen i virkeligheden har et jævn længdeprofil, men at der er en smal, dyb rende i dalbunden. Men denne er i givet fald kun truffet i ganske få af børingerne, hvilket har kunnet give anledning til opfattelsen af, at dalen har et uregelmæssigt længdeprofil.

Det har indtil videre ikke været muligt at afgøre, om smeltvandet strømmede fra SØ mod NV eller i den modsatte retning. Men ud fra almindelige betragtninger omkring isens bevægelse henover Sjælland i Kvartærtiden er en retning fra SØ mod NV den sandsynligste.

Er dalens retning og placering bestemt af en forkastning?
Det er nærliggende at forestille sig, at dalens retlinde forløb skyldes en forkastning. En forkastning er en brudlinie i undergrunden, langs hvilken to blokke har bevæget sig i forhold til hinanden. Der vil ofte opstå en knusningszone langs en sådan brudlinie, og vandet vil have lettere ved at erodere sig ned i den knuste kalk end i de uforstyrrede kalkflæsninger. Men passer retningen af dalen så faktisk sammen med det kendte forløb af forkastninger i Københavnsområdet?

For at vurdere om dette er tilfældet, må vi vende blikket mod den tilgængelige viden om forkastninger under København. Fra ældre tid er denne viden for en stor del fremkommet ved jagttagelser af lægerien i større udgravninger og boreringer. I København har alle større udgravninger gennem de seneste mere end 100 år tiltrukket sig geologernes opmærksomhed. En af de geologer, som var mest aktiv ved opmålingen af udgravninger i København tidligt i århundreder, var professor Alfred Rosenkrantz. Ved sine jagttagelser blev han engang i 1920erne klar over eksistensen af en stor, lodret forkastning af kalklagene langs en NV-SØ-lig linie gennem byen. Bevægelsen langs forkastningen har bevirket, at lagene på nordestsiden er hævet ca. 50 meter i forhold til lagene på sydvestsiden. I samme niveau finder man således langt ældre lag på den nordøstlige side end på den sydvestlige side.

Forkastningen løber under bryggeriet Carlsberg i Valby. Opspærringen af kalken i forkastningens knusningszone er hovedårsagen til, at de borer, der i tidligere tid sikrede Carlsbergs vandforsyning, havde så god en vandydelse, som de faktisk havde. Meget naturligt kaldte de små rovdinosaurer simpelthen måtte være forkert, da det var i stærk modstrid med de fleste andre anatomisk træk, men mange paleontologer har rystet på hovedet af dette. De seneste par år, er der dog fundet flere små rovdinosaurer med fjær over hele kroppen, og adskillige af disse former er encun ikke beskrevet. Netop ekstern beklædning (hår, fjær) regnes af de fleste zoologer for det endegyldige bevis på en høj cellelære fysiologi og dermed et bevis på, at de har været varmblodede.

Endettemi vil også have haft konsekvenser for dyrenes fødebiologi. Hos endetemne dyr er passagertiden for føden igennem forbøjelsessystemet langt hurtigere end hos ektoterne (‘koldblodede’) dyr, idet deres høje energiomsætning forudsætter kontinuerlig tilførsel af store mængder

![Figur 3. Sammenlignende morfologi af dromaeosaur (Velociraptor) og mulevende krag (Corvus), med forskellige karakterer nummereret. De regnes normalt for fuglekarakterer, men var altid også til stede hos visse andre theropoder.](image-url)
energi. Dette betyder f.eks., at knogler eller knoglesplinter ikke kan oplöses særlig effektivt, mavesyreens lave pH-værdi til trods, idet knoglemeren simpelt hen ikke befinder sig længe nok i maven til at blive oplost. Madens surhedgrad neutraliseres dog naturligvis af galden, for den fortsætter ind i tarmsystemet, før ellers ville dette tage skade. Men knoglesplinter kommer relativt uskadt igennem fordejelsesystemet hos store endoterme rovdyr. Dette er tilfældet hos moderne rovpattedyr, mens derimod store krokodiller sagtens kan fordøje selv ret store knogler.

Et nærmere kig på tyrannosaurer

De avancerede tyrannosaurer blev de mest specialiserede og de mest ekstreme af alle store rovdinosaurer, man kender til. Alle store rovdinosaurer var langlemmede, og alle store former havde meget kraftige hoveder, lange tænder og særdeles kraftige kæbemusklar. I modsætning til de fleste mindre former havde de fleste store former dog ret små forlemmer.

Hos store tyrannosaurer tages disse ting et skridt videre (figur 1 og 4). Hovedet bliver disproportionalt stort i forhold til kroppen, især hos de tre største former Tyrannosaurus torosus, T. bataar og T. rex, tænderne bliver også meget store og kraftige, med særdeles kraftige rødder, og kæbemusklene bliver helt fantastisk veludviklede. Samtidig forstærkes hele kraniet, og halsen bliver meget kraftig. Til gengæld reduceres halen, kroppen bliver kortere og mere kompakt, og forlemmerne reduceres betydeligt. Baglemmerne derimod er længere, slankere og mere avancerede end hos andre store rovdinosaurer, og bækkener meget stort med enorme muskel-

tilhæftningspunkter. Omlægning af ørets opbygning viser tillige, at deres hørelse var bedre end de fleste andre rovdinosaurer, og deres øregang vendte fremad. Det gjorde deres øjne også, og de havde således stereoskopisk syn. De store tyrannosaurer mæskinerede altid alle de træk, der har med jagt og byttefængst at gøre, på bekostning af resten af kroppen. Tændere var heller ikke knivbladeaksigende som hos andre rovdinosaurer (figur 5), men langt tykkere og kraftigere, nærmest som store plakke. De var ikke særligt skarpe, og de har ikke kunnet skære i nær samme grad som hos andre former. Derimod synes de bedre designet til at blive hamret direkte igennem kød og, om nødvendigt, knogler i et særdeles kraftigt, knusende bid.

Dette understøttes af resten af kraniets morfologi samt en række fund, bl.a. af den store nordamerikanske ceratopsid Triceratops, på hvilken spidsen af en tyrannosaurer lige blev fundet 5 centimeter inde i lårbensknoglen, samt fund af sønderbiodte halehvirvel fra hadrosaurer. Et par af disse var faktisk helede igen på trods af den kraftige læsion, hvilket beviser at dyret levede videre, så det var altså ikke altid, at tyrannosauro-
På jagt efter Rådhuspladsdalen

John Frederiksen, Dorte Gadeberg, Henning
Kryger Hansen, Peter Jackson og Dorte Lyngby

Rådhuspladsdalen

Den sandfyldte dal, som ligger under grundvandsspejlet, ville have givet store problemer i forbindelse med anlægget af tunnelbanen i forbindelse med en nødvendig søknængning af grundvandsstanden. En grundvandsøknængning fører uvejrægtigt til, at der trækkes vand ud af de overliggende jordlag. I dette tilfælde - med tilstedeværelsen af dalen - ville det have givet anledning til en ekstraordinær stor vandmængde og en ukontrollabel udbredelse af grundvandsøknængningen. I en gammel by som København er mange ældre bygninger funderet i fyldslag eller på
Struktion vist, at hvis den første P-bølges sted er for svagt, vil instrumentet blive aktiviteret af den første af de efterfølgende S-bølger, der svinger vinkelret på udbredelsesretningen. I så fald vil det være en drage, der er placeret 90° fra retningen til jordskælvets epicentrum, der taber sin kugle, og så kan retningen til epicentrum ikke bestemmes entydigt.

Som sagt, nærmer problemet sig kun sin opklaring. Med så forskellige rekonstruktioner må det indrømmes, at vi ikke med 100% sikkerhed kan afgøre, hvad det var for en mystisk kraft, den geniale Chang Heng uddybtede i sin seismiske detektor.

Ordforklaring:
Epicentrum: Det sted på jordoverfladen, som ligger direkte over jordskælvs arrestssted (fokus).
P-bølge: Først ankommande (primære bølge) jordskælvsbølge. Svingningerne sker i forplantningsretningen.

Litteraturhenvisninger:

Imidlertid kan koprofitter forekomme under omstændigheder, hvor deres identitet synes langt mere sikker. For nylig er en kæmpet Koprof, dobbelt så stor som nogen hidtil kendt, fra en stor rovdinosaur blevet beskrevet. Den er hele 44 cm lang, 13 cm høj og 16 cm bred, og denne størrelse, kombineret med, at den er fra Maastrichtian (seneste Krijd) i Nordamerika gør, at det er næsten sikkert, at den stammer fra en tyrannosaur. Det vides naturligvis ikke hvilken art, og selvom *Tyrannosaurus rex* teoretisk var rigeligt stor nok til at have produceret den, tyder alderen på, at den nok stammer fra selveste *T. rex*. *T. rex* er ikke fundet i lag så unge som denne koprof, det er *T. rex*’s tidspæriode. Koprofitternes indhold fører ny viden med sig om rovdinosaurernes fødebiologi.

Imidlertid er den nok vigtigste implikation af koprofitten nærmest blevet overset i de rapporter, der er fremkommet om den, idet disse stort set kun har fokuseret på tilstedeværelsen af fødeforarbejdning hos rovdinosaurerne. Tilstedeværelsen af store mengder af små knoglesplinter er nemlig et særligt stærkt indicium på, at dyret, der producerede den, var endocerat. Endocerme dyr har en hurtig fordøjelse sammenlignet med ektomerme dyr af tilsvarende størrelse, ofte endog langt hurtigere. Dette er nødvendigt, hvis dyret skal optage nok energi til kroppens store energiom sætning. Endocerme dyr kan ikke, som de fleste ektomerme dyr,
Trods gentagne demonstrationer med kunstigt frembragte rystelser betragtede hoffets embedsmænd og lærde i starten Chang Hengs seismiske detektor med stor skeptis. De blev dog ret mystificerede, da en af dragerne en dag, hvor ikke var indtruffet mærkbare jordrystelser, alligevel tabte sin kugle ned i en tudsemund.

beholde maden længe i fordøjelsessystemet, så de kan presse den sidste energi ud af den. Fra et energimæssigt synspunkt kan det langt bedre betale sig at udskille resterne og derefter tilføre ny energi i form af ny næring.

Denne nye kropollt beviser altså, at ikke blot kunne visse sand-synligvis de fleste - rovdinosaure forarbejde føden, og var altså også forskellige fra krokokiller og andre 'krybdyr' i denne hereseende, ligesom de er det på langt de fleste andre områder, men forøjdelser hos rovdinosaurene var hurtig ligesom hos moderne pattedyr og fugle. Da en hurtig fordrøjlelse er et særligt for dyr for endoterne dyr, tyder kropollten altså på, at rovdinosaurene havde en høj energiomsættning. Dette skal så kombineres med alle de andre anatomiske karakterer, der tyder på, at dinosaurerne var endotermes. Disse udgør i sig selv en overvældende mengde indiker på endotermi, men men kan også ansku dette fra en mere filosofisk vinkel.

Hvis en forklaringsmodel, oprindeligt foreslået og senere udbygget udfra ét sæt data, er korrekt, vil den være i stand til at forudsi de karakterer på visse andre data, der endnu ikke er kendt, i dette tilfælde hurtig fordøjelse. Og når de første data på området så findes, vil de udgøre en meget stærk blindtest på, om modellen er korrekt. I dette tilfælde opløste de manglende data sig præcist, som de skulle, såfremt teorien om dinosaurer som fysiologisk langt mere avancerede end moderne krybdyr er korrekt. Det kan næppe være et tilfælde.

Ordforklaringer
Gruppe: En naturlig slægtsskabsgruppe
Undergruppe: En naturlig slægtsskabsgruppe, blot mindre.
sig i den mystiske seismograf fra Handynastiet, befinder den sig stadig i det bageste gemak på cloisonnéfabrikken i Beijing.

Den originale udgave af Chang Hengs opfindelse er desværre ikke bevaret, men alforskrivelser fremgår det, at den bestod af en bronsevas med otte dragehoveder, omgivet af otte gæbende tudser. Under vasens låg gættede der sig formodentlig et pendul, som blev sat i svingninger, når i forvende stod fra jordskælvene når til instrumentet. Stødet udelasted en kugle fra den dragemund, der pegede i balgens bevægelsesretning, og kuglen blev opfangeret af tusion under dragen, som havde "spyet jordskælvet".

Plesiosaurer og andet godtfolk på Nordgrønland

Rikke Bruhn

Her er en beretning om, hvordan man træder en nordgrønlandsk plesiosaaur over teerne.

Ekspedition Mjølnir

Mjølnir: meteorens slog ned i Barentshavet nær afslutningen af Jura perioden for 135-140 millioner år siden. Krateret er bevaret under havbunden, hvor det er påvist ved seismiske undersøgelser. Ud fra dens størrelse har man regnet ud, at meteoren selv måtte omkring 2 kilometer i diameter. Da den slog ned i et dækkende havområde, må nedslaget have forårsaget en kæmpe flodbølge, der vækvede ind over kysterne på de omkringliggende landområder.

Sporing af virkningerne fra et stort meteornedslag er interessant, fordi et nedslag er en øjeblikkelig hændelse, der påvirker store områder samtidig; en sjælend ting i geologiens verden. Derfor er Mjølnir-nedslaget en enestående mulighed for at lave nøje tidsmæssig korrelation mellem aflejringer over store dele af Nordatlanten og derved forstå den regionale udvikling bedre.

Fundet på Kilen

Kilen er ikke jordens behageligste arbejdsplads. Falldyne fra isen gør vejret til en hæftig effere med stærk blæst, kraftig skydannelse og en sommercelsius på 2-3 grader, hvorfor den næsten totale mangel på vegetation og dyreliv er umiddelbart forstækkelse. Efter først 4 dages indblanding i en lokal orkan og derefter en uges arbejde på fjeldsiderne, dukkede 'luffen' op som en glædelig nyhed.

Jeg gætter selv på, at et fjernet jordskælv måske vil kunne få af kuglenes i dragernes mund til at falde ned og blive spist af tuden nedenunder. Men hvad mekanismen er, som får dragen til at lukke munden op, forbliver uopklaret, da vi ikke kan tillade os at læse 'låget' af vasen. Den er også så høj, at vi ikke vil kunne kigge ned i den.

Alle hans overtalelser er dog forgæves. De gør mig kun endnu mere opsat på at få et forklaring på, hvordan dette sjældne instrument virker - om ikke andet, så når jeg kommer hjem. Derfor fotograferer jeg vasen med dragerne og tuderne og sender efter ljækkorksten billederne til VARV (AB). Hvis ikke en dollarstærkt millionær skulle have foreløbet
Kan drager spy jordskælv?

Dorthe Borlund og Asger Berthelsen

Tiden er Påsken 1999 efter europæisk tidsregning; stedet er det højeste gemak i en salgsudstilling i en cloisonné-fabrik i Beijing, hvor jeg (D.B.) ser mig omkring sammen med et dansk rejsereselskab. På prisskillet står også at læse, at den fantasifuldt udsmykkede vase er en SEISMOGRAPH. Det er prentet med rødt mandarinblæk på både kinesisk og engelsk. Jeg spørger lidt skeptisk den ekspedient, der er fulgt i hølene på os, om det virkelig kan passe. Hun bedyrer, at det er rigtigt og tilføjer, at seismografer er fra Han dynastiets tid, cirka 2.000 år gammel.

Aftenen før, under planlægningen af den følgende dags arbejde, havde et af ekspeditionsmedlemmerne bemærket den store lighed mellem litologien på Kilen og Svalbard, hvor han havde arbejdet i en årrække. På Svalbard, fortalte han, havde han været med til at finde rester af nogle plesiosaurer i lag svarende til de, der skulle opmåles dagen efter. Aftenens spøg blev, at så kunne vi jo bare gå ud og finde en, nu vi vidste, hvor de lå.

Plesiosaurluffen fra Kilen.
Der er grund til at tro, at hele plesiosauren er bevaret inde i klippesiden, fordi bevarningsgraden af de dele, der blev afdækket, er perfekt. Muskel-dækket på lufferne har antageligvis kun været tyndt, og det må derfor antages, at disse dele af dyret ville være noget af det første, der fragmenterede under en forrådnelsesproces.

Plesiosaurer

Plesiosauren benytter en gruppe af marine krybdyr, der levede i Jura og Kridt, på samme tid som dinosaurerne på land. De havde en lang hale og hals med et lille hoved, og en torpedoformet krop med to sæt luffer (figur 3). De fleste plesiosaurer menes at have holdt til nær kysten, hvor de levede af fisk og skaldyr. Dette stemmer fint overens med paleogeografiske rekonstruktioner, lavet ud fra den velblottede, sedimentære lagfølge, der viser, at Kilen-området var kystmættet gennem det meste af Sen Jura.

Plesiosauren var typisk omkring 3 meter lange, men nogle typer kunne blive op til 10 meter. Kilen-plesiosaurens luffe omkring 80 cm lang, hvilket tyder på, at dyret måtte 6-8 meter fra hoved til halespids.

Der er fundet en del plesiosaur-fossiler rundt omkring i Europa, så det har sandsynlighed for at være et almindeligt dyr, der levede over store områder. I Danmark er der på Bornholm fundet enkelte plesiosaurtønder i aflæsninger fra Jura.

Hvad skete der så?

Fundet er gjort på grønlandsk jord, i verdens største nationalpark, og det vil kræve en tilladelse fra Grønlands regering at røre yderligere ved den. Derudover er der udgravning af et så stort dyr noget, der kræver helt andre redskaber end en felthammer, nemlig ekspertise, samt tid og ikke mindst penge. Derfor ligger plesiosauren stadig på Kilen, og det vil den formodentlig blive ved med.

Ordforklaring

Litologi: De fysiske karakteristika af en bjergart, f.eks. farve, mineralindhold og kornstørrelse.

Mesozoikum: Geologisk æra der strækker sig fra 225 til 65 millioner år og omfatter perioderne Trias, Jura og kridt.

Rifting: Den tidlige fase af en kontinental opspærring og separation. I opspærringsfasen opstår et system af rift-dale gennem continentet, som f.eks. det østafrikanske dalsystem.

Strike-slip bassin: Sedimentært bassin dannet i forbindelse med en sideværs (strike slip) forkastning, hvor forrykkelsen sker horisontalt og parallelt med forkastningen. Strike-slip bassiner dannes i områder langs forkastningen, hvor der er en afvigende orientering i forhold til sit ellers retliniede forløb. I sådanne områder opstår der et 'hul' mellem de to forkastningsadskillede blokke, når de glider forbi hinanden.

I år 2000 udkommer VARV på følgende datoer

VARV 2000 nr. 1: 1.-5.
VARV 2000 nr. 2: 1.-8.
VARV 2000 nr. 3: 1.-10.
VARV 2000 nr. 4: 1.-12.