4. I hvert af disse reservoarer ændredes forholdet \(\text{U/Pb} \) kun som et resultat af radioaktivt henfald af uran til bly.

5. På det tidspunkt hvor et almindeligt blymineralfad dannedes (f.eks. galena) blev bly adskilt fra uran, hvilket betyder at isotopsammensætningen har været konstant siden dette tidspunkt.

Det betyder, at forholdet \({^{206}\text{Pb}}/{^{204}\text{Pb}} \) i et uranførende system med en alder \(T \) som har været lukket (dvs. at der ikke er tilført eller fjernet uran og dette grundstofets datterisotoper) vil være:

\[
{^{206}\text{Pb}}/{^{204}\text{Pb}} = {^{206}\text{Pb}}/{^{204}\text{Pb}} + {^{238}\text{U}}/{^{204}\text{Pb}} \quad (e^{at})
\]

Trækkes der bly ud af et sådant system for \(t \) år siden vil forholdet \({^{206}\text{Pb}}/{^{204}\text{Pb}} \) af dette bly være:

\[
{^{206}\text{Pb}}/{^{204}\text{Pb}} = {^{206}\text{Pb}}/{^{204}\text{Pb}} + {^{238}\text{U}}/{^{204}\text{Pb}} \quad (e^{-at+c)}
\]

Hvor

\({^{206}\text{Pb}}/{^{204}\text{Pb}} \) = isotopforholdet af 'almindeligt bly' med en alder \(t \)

\({^{206}\text{Pb}}/{^{204}\text{Pb}} \) = isotopforholdet af det oprindelige bly i Jorden for \(T \) år siden

\({^{206}\text{Pb}}/{^{204}\text{Pb}} \) = forholdet mellem disse isotoper i et bestemt kildeområde for 'almindeligt bly' på nuværende tidspunkt

\(t \) = den tid der er gået siden 'almindeligt bly'-prøve blev fjernet fra dens kildeområde

\(T \) = Jordens alder
Forsidebilled: *New Red Sandstone med storskalde skråejring (sydlige England). Den nederste enhed er ekolit (vindefløjret), mens den øverste er fluvial (aflejret af floder).*

Forfatternes adresser: Mette Bjørnsen, Lars B. Clemmensen, Karsten Pedersen og Robert Frei har alle adressen: Geologisk Institut, Østervoldgade 10, 1350 Kbh. K.

VARV

Adresse: Tidsskriftet VARV, Geologisk Institut, Øster Voldgade 10, 1350 København K. Telefon: 35 32 24 00, Geologisk Institut. E-Mail: SvendP@Geo.Geol.KU.DK

Redaktion: Asger Berthelsen, Knud Binzer, Bjørn Buchardt, Bjørn Hageskov, Henrik Foug, Mikkel Hede, Arne Thorsløj Nielsen, Mikael Pedersen (webmaster) og Svend Pedersen (ansvarshav.)

Bestyrelse: Asger Berthelsen, Valdemar Poulsen, Bjørn Hageskov og Svend Pedersen.

Tekstredaktør: Svend Pedersen

Lay-out og grafik: Bjørn Hageskov

Reprø og tryk: Dansk Erhvervstryk A/S

VARV udkommer fire gange årligt. Prisen er 140 kr. i abonnement for 2003. Abonnement kan tegnes ved at indsende beløbet til VARV, postgiro 9 06 88 80, eller 160 SEK til VARV's svenske postgirokonto: 4388-5, eller 160 NOK til VARV's norske postgiro: 7877.08.15672.

På VARV's hjemmeside www.varv.dk er det bl.a. muligt at søge i VARV’S database, hvor reference til alle artikler er lagt ind, ligesom der er et lille resume af artiklerne. Der er også oplysninger priser på gamle numre, sæmnrnre etc. som sammen med tegning af abonnement kan bestilles on-line.

Adresseændringer bedes meddelt VARV

Et-trins tilvækst

\[\mu = 7.7 \]

BLY-MODELALDRE

Beregninger af modelaldre er baseret på følgende forudsætninger:

1. Jorden var oprindelig homogen, og på dette tidspunkt var uran, thorium og bly jævnt fordelt.

2. Isotopsammensætningen af det oprindelige bly var alle steder den samme og antages at være til det mindst radiogene bly, der er målt i Canyon Diablo meteoritten (VARV 2002,4).

3. Derefter begyndte der en opdeling af Jorden i forskellige enheder (reservoarer) som kappe og skorpe og forholdet U/Pb udvikledes uafhængigt af hinanden i de forskellige reservoarer.
Figur 9. ‘Almindeligt bly’
isotopiagram med bly-
data på en granat dannet
af cirkulerende opløsninger. Data er opnået ved
trinvis udludning af bly.
Alderen på 3,74 Ga (eller
3,739 +/- 21 Ma (millioner
år)) svarer til den tidlig
arkeaiske metamorfe på-
virkning af området. Den
gamle (3,896 Ga) model-
alden viser, at den oprin-
delige bly i granaten
stammede fra en skorpe-
kilde, der er vesentligt ældre end det bly, der blev udludet af de mindst radiogene
galenaer i en modelalder på 3,81 Ga.

Sidst men ikke mindst viser en modelalder på en 3,89 Ga på en 3,74 Ga gammel granat fra Isua overfladebjergarternes eksistens i en ældre skorpemineral i disse (figur 9). De 3,74 Ga er opnået ved den ovenfor
beskrevne trinvis udludningsteknik. De 3,89 Ga bliver således alderen af kilden
for det bly, der blev inkorporeret i granaten på det tidspunkt, hvor den
krystalliserede i forbindelse med en 3,74 Ga gammel metamorfe hændelse.

På samme måde har den trinvis udludningsteknik været anvendt på et
mineralskab der omfatter turmalin og zinkblende, som findes i en kvartsøre
(figur 10). Alderen på 3,73 Ga for dette mineralskabel svarer til den tidligere
nævnte alder på en granat fra Isua (figur 9), hvilket betyder at de blev dannet
under den samme metamorfe hændelse. Modelalderen på 3,73 Ga for den
oprindelige bly i disse åremineraler svarer endvidere til alderen af det bly, der
blev målt i en galena (modelalder på 3,74 Ga). Det viser, at der var nært
sammenfald mellem dannelsen af tonalitter på dette tidspunkt og de opløsninger
udfra hvilke både zinkblende og turmalin krystalliserede.

I eksemplet har blisotoper været anvendt med succes til at spore eksistensen af
meget gammel ikke-bevaret kontinentalt skorpe i Isuaområdet, til at datere
metamorfe hændelser og påvirkninger der skyldes cirkulerende opløsninger i
suprakrustalerne i forbindelse med senere metamorfe og magmatiske
begivenheder.

DE RØDE MILER PÅ ANHOLT
I AXEL JESSENS FODSPOR

Mette Bjørnsen og Lars B. Clemmensen

Det marine forlad, hvorpå Ørkenen er dannet, består af en havet strand-
volddslette, som hovedsagelig er bygget ud i nordøstlig retning. Denne succes-
ion af strandvolde er opstået ved gradvis nedbrydning af de ældre kvartsøre
allejringer, som udgør den vestlige og østlige del af øen. Landskabets toppunkt er beliggende 48 meter over havet, hvilket giver en ganske stor kon-
trast til den flade strandvolddslette, der kun få steder hæver sig mere end 8-9
meter over havniveau.

Grundet sin placering midt i Kattegat er Anholt frit eksponeret for både vind,
strøm og belger, og dette dynamiske miljø præger kystmorfologen. Eksempelvis
ændrer den sanddøde, som udgør øens nordøstspids, hyppigt udstrekning og
orientering, i lighed med Grenen ved Skagen Odde.

Figur 1. Kort over Anholt (med tilladelse fra Kort og Matrikelstyrelsen)
Statsgeolog Axel Jessen (figur 2) skrev i 1897 en særdeles grundig og detaljerede afhandling om de geologiske forhold på Anholt, med titlen 'Beskrivelse til geologisk Kort over Danmark – Kortbladene Læsø og Anholt'. Heri omtaler han Ørkenen med følgende ord: 'et saa øde og trist Udesende som man kun træffer det faa Steder i Landet'.

At området vitterligt gør et meget øde indtryk må man give Jessen ret i, men hvorvidt det også forjærer prædikatet trist, er nok et synspunkt som de færreste af øens mange besøgende – for ikke at tale om de fastboende – vil tilslutte sig.

Stednavnet Ørkenen optræder icke hos Axel Jessen, men det dukker op året efter i Ove Paulsens 'Om Vegetationen paa Anholt', og i 1935 er det at finde på officielle, topografiske kort. Selvom vi ikke har at gøre med et decideret sandhav, som det kendes fra de tropiske og subtropiske ørkenbelter, synes betegnelsen ørken alligevel at være ganske passende, for efter danske forhold er dette klitlandskab i høj grad usevæntligt (figur 3).

Morfologien er meget forskelligartet og spender fra små kuppeformede klitter, over uregelmæssige rygge og 'stjænklitter', til større, komplekse parabolarmer. Alle klitterne er dateret i varierende grad, og denne morfologiske modificering er tilsyneladende tæt forbundet med dannelsen af vindbrud, hvorved klitførene løbende eroderes (figur 4). Længst mod vest, hvor de ældste indlandsklitter ligger, yder højlandet læ for de fremherskende vind, og vegetationen, som især består af hjætte, mussor og spredte ernebjæsker, formår at holde på sandet. I den nordøstlige del af Ørkenen har vinden frit spil fra alle retninger, og hende finder man en større andel af aktivt klitter i form af vegetationslose vindbrud samt deciderede udkoblingsbegreber, hvor der dannes nye, tungeformede sandlænger ved slugens umundning.

Ørkenens klitter adskiller sig fra dem man andre steder i Danmark ser inde i landet, ved at de rent fakisk er ægte indlandsklitter. Som det vil fremgå senere, er der ikke tale om forhenværende kystklitter som grádvist er vandret bort fra deres oprindelige miljø, men derimod om klitter dannet i en vis afstand fra kysten.

Stacey og Kramers model er bygget op omkring to et-trins vækstkurver. Resultaterne refererer til den første af disse.

Modelalmere og de to mindst radiogene galenaser giver nu mening geologisk, idet de svarer til to punkter på en isokron som tidligere er opnået på tidlige tollititler fra området. Den tykke linje er en sekunder isokron, som går gennem galenaser, der blev renobiliseret i forbindelse med de senarkeiske metamorfe behandlinger i Issa området.

Vi har kombineret ovenstående data med Pb-Pb aldre på 3,74 Ga på mineraler som turnalin, zinkblende og granat, der også er dannet af cirkulerende oplosninger, men efter deformationen af området. Resultaterne viser, at aktivitet knyttet til cirkulerende oplosninger i tidlig Arkeåkum tidsmæssigt ikke kan skelnes fra den tidligste metamorfe påvirkning og den væsentlige magmatiske aktivitet i form af nye toalittiske smelters indtrængen for ca. 3,75 Ga år siden.
Processor i den ældste Jordskorpe: Et eksempel fra Isua i Vestgrønland

Det fundne bly afviger fra, hvad man finder i de almindeligt anvendte blyudviklingskurver for den gennemsnitlige kontinentalskorpe, idet det har for høj værdier af forholdet 206Pb/204Pb i relation til forholdet 207Pb/204Pb (figur 8). Dette kan modelles som et et-trins udvikling med følgende startparametre: μ (206U/207Pb): 7,70 hvilket indebærer såkaldte modelalder på 3,81 Ga og 3,74 Ga (se figur 8b).

Modelalder er et udtryk for den ælder og den μ-værdi, der blev med baggrund i et dataseets placering på en bestemt blyisotopudviklingslinie i et diagram, hvor 207Pb/204Pb er afsat mod 206Pb/204Pb.

De oprindelige begrensninger (m og tid) viser en højere μ-værdi (7,7) i 'kilden' til de cirkulerende opløsninger, der har dannet åren, og muligvis også i den magmatiske udgangsbjergart for gnejsen. μ-værdien er således højere end den værdi på 7,19, der blev anvendt af Stacey og Kramers (figur 2) for det første trin af blyudviklingskurven for den kontinentale skorpe (se figur 8b).

De nye data er i overensstemmelse med kravet til en berigelse af uran i forhold til bly i forbindelse med den først dannede kontinentale skorpe, svarende til en fornyet kappe i den tidlige Jords historie. Den høje værdi af forholdet 207Pb/206Pb relativ til værdien af forholdet 207Pb/206Pb i galena fra Isua viser således, at der blev dannet skorpereservoire med høj U/Pb forhold tidligt i Jordens historie. De høje U/Pb forhold kan således tilskrives eksistensen af en gammel skorpe.

Der er et påfaldende sammenfald i alder mellem galenagenerationerne og de almindelige tonalittiske gnejslegemer i området. Dette og det forhold, at man finder gnejsen og gnejserne sammen, understøtter tolkningen af, at dette meget lidt radiogene jordskole bly vil kunne ligne det bly, man finder i 3,75 Ga og præ-3,8 Ga gammelt tonalittiske udgangsmateriale for gnejslegemerne. Dette peger på at de tidlige arkaiske opløsninger og de magmatiske hendelser er tæt knyttet til hinanden.

Figur 3. Ørkenen set mod nordøst, med den karakteristiske, træbevoksete klit 'Ostebakken' i baggrunden (se også figur 1).

Figur 4. Delvis stabiliseret klitform med store, inaktive vindbru i den centrale del af Ørkenen.
Uden nærmere undersøgelser kan det dog være vanskeligt at skelne de to typer fra hinanden, eftersom deres morfologi på langt sigt afhænger af de samme primære faktorer, deriblandt vindforhold og menneskelig påvirkning. Klitterne på Anholt er formentlig nogle af de eneste ‘indlandsklitter’ i Danmark – foruden Råbjerg Mile i Vendsyssel – der får lov til at følge en naturlig udvikling med aktiv sandflugt, uden at der gribes ind via plantning og lignende, for at skabe kunstig stabilisering.

Farve

Mange af Ørkenens klitter har i tidens løb fået navne, og ved gøns sydøstkyst ligger et mindre, overvejende vegetationsløst klimaråde, som går under tilnavnet De Røde Miler. Måske fordi man netop på det sted støger særligt mærke til indlandsklitternes karakteristiske og usædvanlige gulbrune, til tider svagt rødlige farver, idet disse her gennembruger de hvide kystklitter (figur 5). Axel Jessen kommenterer også fenomenet i sin afhandling: 'Medens Flyvesandet ved Kysterne af Anholt er hvidere end man i Almindelighed ser det, er Sønder inde i Landet af en brungul Farve, hidrørende fra et tyntt Overtræk af Jerntveitelhydrat'.

Petrografiske analyser bekræfter, at størstedelen af kvartskornene fra indlandsklitterne dækkes af brunlige belægninger, som især er koncentreret omkring fordybninger i klommes overflade. Hvorvidt der som Jessen anfæver er tale om flussyrer, som er i stand til at nedbryde silikatstrukturen og dermed oplove mineralet - vil derefter gøre det muligt at analysere mineralets almindelige bly-sigatur. Teoretisk og under ideelle betingelser, dvs. at mineralene efter dannelse ikke har været udsat for påvirkninger, der har ændret forholdet U/Pb, vil de udtrukne fraktioner af radiogent bly samt den svært opløselige rest plotte langs en ret linie (en korrelationslinie) i et Pb-Pb isokronogram (figur 7). Liniens høldning er proportional med alderen, jo støjere linien er jo højere vil alderen være, og man har derfor et udtryk for tidspunktet for dannelsen af det mineral, man har undersøgt.

Figur 5. De Røde Miler ved Pokhusbugten mellem Indien og Stølhøjene (se figur 1).

Figur 6. Mikroskopfotografier der viser adskillige små bruntlige korn af mineralet allanit med en udtalt reaktionsvand dannet ved radioaktive processer. Bjergøren er en 3,8 Ga gammel anfibolit fra Vest-grønland.

Figur 7. Skemaæske Pb-Pb isokronogram, der viser øgende mængder af radiogent bly i forskellige uttrak (vist ved numrene i kantet parentes) af et mineral. Høldningen af linien vil under ideelle betingelser være proportional med dannelsesalderen af den respektive mineraflase.
DATERING VED HJÆLP AF BLYISOTOPER: Pb-Pb DATERING

På visse datering ved hjælp af uran- og blyisotoper foregår bedst ved brug af

concordiatetoden, som er baseret på en beregning af alderen med baggrund i

forholdene $^{206}\text{Pb/}^{238}\text{U}$ og $^{207}\text{Pb/}^{235}\text{U}$.

Alternativt kan man datare ved hjælp af U-Pb og Th-Pb isokroner. Disse er

baseret på f.eks. beregninger udført forholdene $^{206}\text{Pb/}^{235}\text{Th}$ og $^{207}\text{Pb/}^{235}\text{Pb}$ eller

$^{206}\text{Pb/}^{208}\text{Pb}$ og $^{234}\text{U/}^{238}\text{Pb}$. Der eksisterer kun få gode eksempler på U-Pb og Th-Pb

isokronaldre i litteraturen. Med henvis til U-Pb isokroner skyldes det, at

uran let fjernes i miljøet tæt ved jordoverfladen i forbindelse med kemisk

forvitring. Dette resulterer i falske, lave U/Pb-forhold.

Til sammenligning vil nutidige tab af uran ikke påvirke isokroner i diagrammer,

hvor forholdet $^{207}\text{Pb}/^{206}\text{Pb}$ er afbildet med forholdet $^{206}\text{Pb}/^{207}\text{Pb}$. Indbygget i disse

forhold er der (som beskrevet i VARV 2002,4) en mulighed for at kontrollere

produktionen af datterisotoper af et enkelt grundstof - bly (^{206}Pb, ^{207}Pb) - som en

funktion af det radioaktive henfald af foreldresisotoper af tilsvarende et enkelt

grundstof - uran (^{238}U, ^{235}U). Koblingen af de to henfaldsforløber i mineraler og

bjergarter giver en tidstriben udelukkende baseret på forholdene mellem

blyisotoper. En meget stor fordel ved Pb-Pb dateringsmetoden er, at det ikke er

nødvendigt at bestemme forholdet mellem foreldre- og datterisotoper i forbindelse

med det analytiske arbejde. Man har kun brug for at måle forholdet mellem

blyisotoperne.

DATERING VED TRINVIS UDLUDDNING AF ISOTOPER FRA BJERGARTER OG MINERALER

Trinis udledning af blyisotoper er en helt særlig anvendelse af den kemisk-

analytiske metode ved Pb-Pb datering og er baseret på det forhold, at de radiogene

blyisotoper (dvs. blyisotoper dannet ved radioaktivt henfald af uran og thorium)

findes på steder i mineralgitteret, hvor de sidder forholdvis løst bundet. Dette

skyldes, at der ved de processer, der er knyttet til de radioaktive henfald dannes

defekter i mineralgitteret, og at det radiogene bly sidder i disse defekter. Figur

6 viser en reaktionsinds dannede ved radioaktive processer knyttet til det stærkt

radioaktive mineral allanit i en metamorfoseren 3,8 Ga gammel puderlava fra

Westgrønland. Allanit er et thoriumførende mineral i epidotgruppen.

Det bly, der er bygget ind i mineralgitteret ved dannelsen af det respektive

mineral, almindeligvis omtalt som „almindeligt bly“, sidder derimod fast bundet

og er ikke nemt at få ud af gitteret.

Når et mineral angribes af syrer af variabel styrke, vil det løst bundne radiogene

bly forholdsvis nemt blive udløbet. Fremadskridende udledning ved hjælp af

stærkere og stærkere syrer fjerner derfor mere og mere radiogen bly fra

mineralsstrukturen. Et sidste kraftigt angreb på mineralgitteret - oftest med

`Jernevejlehydrat` vil fremtidige undersøgelser kunne fastslå, men efter at

sandsynlighed vil almindeligt forekomme samtidig medforbindelser, for som eksempel

mineralet goethit, være til stede. Dette mineral kan udtrykkes ved formlen FeOOH,

og ved tilføjelse af vand fås limonit, som i daglig tale også går under betegnelsen

rust. I de fleste terrestriske sedimentære miljøer er FeOOH ustabil, idet det med

tiden omdannes til hæmatit (Fe$_3$O$_4$), hvorved sedimentets farve skifter fra gulbrun

til rødlig. De gulbrune farvenuancer som præger Ørkenens klitland indikerer, at

det indnu må indeholde forholdsvis begrænse udvikling mængder hæmatit, og således

formentlig befinder sig på et mellemstade i omdannelsesprocessen.

Hvorforder i det hele taget er denne farveforfølgelser mellem indlandsklitterne

og kystklitterne på Anholt, er et spørgsmål, som Axel Jessen også gjoede sig overvejelser om. Det kan sandsynligvis hensignes til deres kildemateriale, idet

indlandsklitterne er dannet ved afblanding af de underliggende strandvoide, mens

kystklitterne er dannet af nedlands, maritim sand. Principielt set er strandvolds-

sedimentet naturligvis oprindeligt maritim, men det har ligget høvet over havets

påvirkning i tusinder af år, hvorved de geologiske forhold er blevet ændret.

Vind og vej er med tiden betydet en gradvis nedbrydning af de mørke jernholdige

mineraler (f.eks. amfiboler og pyroxener), og derved givet mulighed for

udfældning af jemforbindelser på kvartsromenes overflade. Kystklitterne derimod

er et yngre fenomen, hvis kildemateriale - maritim sandsand - kontinuerligt

fornyes, og derfor ikke på tilsvarende vis præges af disse overfladebevægelser.

Axel Jessen mente desuden, at den karakteristiske farve ligeledes skyldes et

usædvanligt højt indhold af jernmineraler som magnetit i det sand, der findes på

Anholt: såvel recent sandsand som det gamle strandvoldsand. Hvorvidt han har

ret i denne antagelse får stå hen i det uvisse, indtil der foreligger sammen-

ligneende, geologiske undersøgelser af klitland fra andre danske lokaliteter.

De diagenetiske processer, hvorved sedimenter gradvist bliver mere og mere

rødfarvede, resulterer i dannelsen af de såkaldte „red beds“, som optræder

i gennem hele Jordens historie, men måske især kendes fra Devon i form af Old Red

Sandstone, samt fra Perm-Trias som den yngre udgave New Red Sandstone.

Sidenævnte geologiske enhed karakteriseres mange steder af storksala klit-

aflejringer (se forside). Et mere nutidigt eksempel er dele af de subtropiske og

tropiske ørkenområder, hvor klitlands farve antager mere rødlige nuancer, jo

ældre det bliver, og jo længere det transporteres fra kilden.

Hvorvidt Anholts Ørken engang i fremtiden vil bestå af fuldstændig rødfarvede

klitter er ikke til at sige med sikkerhed, idet mange faktorer spiller ind, herunder

climateniveau. Men den naturlige diagenese som sedimenterne her gen-

nermår, giver en potenti el mulighed for, at De Røde Miler med tiden vil være en

passende betegnelse for et område af langt større udstrækning end i dag.
Kornstørrelse

Udover den karakteristiske farve er kornstørrelsesforholdene et andet punkt, hvor Anholt's indlandskitter adskiller sig fra de øvrige danske klitfjordkomster, idet de generelt er usædvanligt grovkornede. Dette blev først gang dokumenteret af Axel Jessen, som analyserede sedimenter fra 6 indlandskilter og fandt, at kornstørrelsen udover at være meget varierende karakteriseredes af en fordeling, hvor fraktionerne over 0,5 millimeter udgjorde en væsentlig andel. Den nævnte variation eksempeliseredes ved, at én af prøverne var sammensat således, at 91% af kornene havde en diameter som oversteg 2 millimeter, hvilket principielt set gør betegnelsen flyvesand lettere ukorrekt. Imidlertid er denne prøve ikke et udtryk for, at nogle af indlandskilterne består af grus snarere end sand. Forkla- ringen ligger derimod i deres interne texturer, idet Jessen anfører at ‘Det ejendommelige “flyvesand” - - danner ikke hele Klitten, men kun enkelte Lag i denne’.

Nye kornstørrelsesanalyser af sedimentprøver fra 19 indlandskilter fordelt over et repræsentativt område af Ørkenen viser en gennemsnitlig kornstørrelse på 479 mønter (mm = 1/1.000 millimeter), svarende til mellemkornet sand. Det er dog ganske tæt på at kunne kaldes grovkornet, idet denne betegnelse forudsætter mindsteværdien 500 mønter eller 0,5 millimeter. Ser man på kornstørrelsesfordelingen i det analyserede klitsand fremgår det, at fraktionen under 0,5 millimeter i gennemsnit udgør 56%, mens fraktionerne større end 0,5 millimeter udgør 44% og i visse tilfælde helt op til 83%.

Således bekræftes Jessens observationer, og desuden muliggør de nye, mere geografisk dækkende data, at der kan aflæses en overordnet tendens med aftagende kornstørrelse mod nordøst, hvilket også er forventligt med tanke på de dominerende, vestlige vindretninger.

Forskellen mellem indlandskilter og kystkitter begrenser sig ikke kun til farven, men omfatter også kornstørrelsen. Axel Jessen konstaterede dette fænomen i 1897 ved at indrøge to kystkitter i sine undersøgelser.

Figuur 4. To kalfeldspat krystaller. Foto: O.B. Berthelsen

Figuur 7. Sandskredstunger med korn op til 5 millimeter. De Røde Miler.

spejler (figur 2). Dette viste forskeren Oversby allerede i 1978 i et studium, hvor han sammenlignede fordelingen af blyisotoper i kalfeldspatter (figur 4) fra senarkæske (ca. 2,7 Ga) granitoider fra henholdsvis Yilgarn blokken i Australien og den østlige del af Superior provinsen i Canada.

Kalfeldspatter er stærkt beriget med bly i forhold til uran og bliver ofte brugt til give en ide om blyisotopmannessættningen i de magmær, hvor de er dannet. Figur 5 viser den oprindelige blyisotoppammensættning af granitoiderne fra Canada og Australien sammenlignet med en et-trins vækstkurve for de to magmær. Granitoiderne fra Superior provinsen plotter tæt ved eller lidt under kurven for de to magmær, mens granitoiderne fra Yilgarn blokken ligger noget over kurven. Sådanne data viser, at der allerede i Senarkæske var udviklet markante heterogeniteter i magmærens kildemråder i den kontinentale skorpe. De høje værdier af forholdet $^{206}\text{Pb}/^{204}\text{Pb}$ i forhold til $^{206}\text{Pb}/^{204}\text{Pb}$ som man finder i Yilgarn blokkenes bjergarter kan skyldes tilstedevarerne af ældre skorpekomponenter med høje U/Pb-forhold.

Figuur 5. Blyisotopdiagram med data fra granitoider fra Canada, Superior Province (åbne cirkler) og Australien, Yilgarn blokken (udfyldte cirkler).

Blyudviklingskurven er en et-trins vækstkurve som svarer til den endelige sammensætning af bly i ‘gennemsnits-jorden’.

I følge Stacey og Kramerers model udviklede bly sig i tidlig Arkeokum for mellem 5,57 Ga - 3,7 Ga siden (Ga: Giga år = milliarder år) i et reservoar, hvor forholdet mellem uran og bly udtrykt som forholdet mellem isotope

\[\frac{^{238}U}{^{206}Pb} = \mu \]

havde en konstant værdi på 7,19. For 3,7 Ga siden skete der en massiv dannelse af kontinentalskorpe, og \(\mu \) steg til 9,74 idet uran i denne første proto-kontinentalskorpe optokoncentredes i forhold til bly. Kappen blev tilsvarende foryndet med hensyn til uran. Værdien på 9,74 gælder stadig som en gennemsnitsværdi for den kontinentale skorpe.

Kontinentalskopen har dog altid været langt mere uensartet end den viste ved definerede vækstkurve for galena af:

Imidlertid er det først nu, at der foreligger eksempelvis tal for de gennemsnitlige kornstørrelsesværdier, og derved kan kystklitterne tilskrives en værdi på 295,5 m smm, mens indlandsklitterne som tidligere nævnt har en middelværdi på 479 m smm. Selvom der i begge tilfælde er tale om mellemkornet sand, er forskellen alligevel betydelig, og det kan oftest forklares med det blotte øje, uden brug af lup eller mikroskop. Som det var tilfældet i forbindelse med sandets varierende forvennuancer, skal forklaringen på denne kornstørrelsesvariation søges i kildematerialet. Med Jessens ord skyldes det, at: 'Materialet i de hvede Havstokke, hvorfra Insdandens stamme, er grovere og mere uensartet end Sandet ved de nuværende Kysten.'

Indlandsklitternes udsædvanlige kornstørrelse afspilles også af de sandskredstuner (figur 7), som er almindeligt udbredt blandt de mest aktive klitter, og gerne i forbindelse med vindbrud, hvor sand let skrider ned af de stelsje sider. Ved De Røde Miler er der god mulighed for at studere disse sandskredstunger, og analyser af indsamlede prøver viser, at kornstørrelsen når helt op til 5 millimeter.

Et andet fænomen som demonstrerer kornstørrelsesvariation på en mindre skala er lamination, idet klitternes interne texture præges af ykevældige fine og grove lag, afhævnet under skillende vindenergiforhold. Afhængigt af grund af kræftige vinde vil forøge en opkonzentration af det grovaste sediment, hvilket giver sig udsig bl. at der på klitternes stødsiden kan dannes overladelag med spredte klitter op til 8 millimeter i diameter. Det grove materiale findes ofte afhævnet som et mønster af vindbribber (figur 8a og 8b), hvis form og orientering afhænger af kornstørrelse, vindretning og klittopografi.

De geokemiske og sedimentologiske karakteristre, som adskiller Anholt's indlandsklitter og kystklitter, kan vanskeligt forklares på anden måde end Axel Jessens gjorde det for over 100 år siden: som et resultat af forskellige dannelseshistorier. Flere vægtige beviser understøtter teorien om at de to klitterfjær ikke har samme kildemateriale, herunder den markante farveforskelle der som nævnt kan relateres til jernholdige forvirringsprodukter, samt det faktum at indlandsklitterne er mere grovkornede end kystklitterne. Var Örkens klitter dannet ved tilfæld af sediment fra kysten, i stedet for ved 'lokalt' aflæsning af de hvede strandvalde, havde det givet op til det omvendte kornstørrelsesvariation med de mest finkornede klitter beliggende indlands, i størst afstand fra kilden.

Udviklingshistorie
Örkensen som vi kender den i dag er ganske ung i geologisk forstand, idet den i det fjerde århundrede tænkte omkring år 1600-tallet. Før den tid var området dækket af en større by, men i år 1600 beordrede Frederik II etableringen af stenførste fyr, og brændsuite hertil skulle skaffes lokalt. Konsekvensen blev kraftig for-
Figur 8a. Komplekst mønster af vindribber, der er udviklet i et aktivt vindbrud under østlig kuling.

hugning af skoven, og i 1592 indskærpede Christian IV at der ikke måtte fælles yderligere af den decimerede skov, idet søfolkene beklagede sig over, at der derved forsvandt et vigtigt sørørke. I stedet skulle fyret holdes ved lige ved hjælp af importeret træ fra Norge, og i 1624 gik man endeligt over til kulfyning. Andre faktorer, så som tjæreafstilling og træ til husholdningsbrændsel, kan også have påvirket skovhugsten, men disse faktorer har højt sandsynligt været af sekundær betydning.

Da først skoven var blevet kraftigt reductoreret, har sandflugt været uundgåeligt, i særlighed på grund af øens udsatte placering. Kilder beretter om sandflugtskader allerede i 1640’erne, og kulminationen indtraf i 1680, hvorbyen var alvorligt truet af tilsanding.

Disse begivenheder omkring skovens forsvinden fra Anholt omtales kort af Axel Jessen, som desuden nævner den interessante kendegning, at der så sent som i begyndelsen af 1800-tallet blev observeret fyrenstubbe i klitterne. Fundene af stubbe og rødder viser, at de ældste indlandsklitter må være dannet før fyreskoven bredte sig over den hovede strandveldsletter, hvilket er ensbetydende med alders på mindst 500 år. Men med arkeologernes hjælp er der faktisk muligt at spore Ørkens største klitter endnu længere tilbage i tiden. Mange af dem, som i årene løb har gaestet Anholt, kender utviklingsomt til det ganske betydelige antal flintværksteder, der findes spredt rundt omkring på de sparsom

BLYISOTOPER

EKSEMPLER PÅ DERES ANVENDELSE

Robert Frei

UDVIKLINGEN AF JORDENS SKORPE - KAPPESYSTEM

I forbindelse med arbejdet med blyisotoper fandt man på et tidligt tidspunkt ud af, at blyisotoper i galena eller blyglaes (PbS, figur 1) fra nogle af de store sulfidforekomster - f.eks. bly-zink-sølv forekomsten ved Mount Isa i Australien - ‘plotter’ langs en såkaldt et-trins vækstkurve i blyudviklingsdiagrammet, hvor forholdet $^{206}Pb/^{204}Pb$ er aften forholdet $^{206}Pb/^{204}Pb$ (figur 2, se også VARV 2002,4). I Mount Isa forekomsten er galena stratafundet, dvs. knyttet til bestemte lag i en skifer af prækambrik - midiproterozoisk alder - alder (figur 3). Galenaen er endvidere dannet på samme tid som forekomsten i øvrigt.

En et-trins vækstkurve viser, at blyisotopystemet i galenaen har haft en forholdsvis simpel historie. Man forestillede sig oprindeligt, at forekomsterne var aflæst fra Jordens kappe og nedre skorpe og derefter udviklet i et lukket system, dvs. et system, hvor der ikke havde været udveksling af isotoper med omgivelserne.

at den største mængde flyvesand er blevet aflejret i den nordlige del, mens der i den sydligel del kun findes omkring et par meter.

Op igennem hele lagserien til den moderne overflade veksler litologien af flyvesandsenheder afgrænset af jordbundshorisonter. Denne veksl i litologi fortæller en historie om primært klimaudvikling og opbygning af klitfeltet gennem de seneste ca. 7.000 år. Optagelserne med georådene har gjort, at de mest markante jordbundshorisonter nu med stor precision kan korreleres ud over hele klitfeltet. De har dermed været med til at skabe et mere fuldstændigt billed af den geologiske udvikling af Hvidbjerg klitfelt, der viser at hele klitfeltet enten har været stabiliseret af et tykt vegetationsdække eller har været påvirket af markant sandflugt og vandrykkelser. Dateringer i området peger på, at perioderne med et stabilt vegationsdække har været den normale situation, dvs. den situation der i tid har været mest almindelig, mensperioderne med sandflugt har være ekstreme eller unormale. Derudover har der også vist, at de klimatiske ændringer der er foregået forud for skiftende mellem stabilisering og sandflugt er sket relativt hurtigt, dvs. indenfor få hundrede år.

Man kan læse om kystlinien ved Lodbjerg, der ligger umiddelbart syd for Hvidbjerg klitfelt i VARV 1989,4, samt i artiklen 'Mens havet æder ind i det nordjyske hedelandskab' af David Liversage og David E. Robertson i Naturens Verden, nr. 7, 1988, før man selv tager derep og ser på et af landets flotteste områder.

Figur 8b. Nærbillede af vindribber (kompas som skala).

bevoksede strandvolde (figur 9) og vidner om stenalderfolkernes tilstedeværelse. Arkeologerne har foretaget adskillige undersøgelser af disse fund, som kan tidsfæstes til perioden 5.000 - 3.500 år før nu, svarende til slutningen af Atlantisk tid og et stykke ind i Subboreal tid. Set fra et geologisk synspunkt er det mest interessante imidlertid, at Ørkenens ældste boplads er fundet på en 2-3 meter høj klit. Dette er nemlig ensbetydende med, at strandvoldsletten allerede for 5.000 år siden prægetes af klitdannelse, men i hvor høj grad de oprindelige klitter er bevaret til i dag, og hvilken udstrækning de har haft, vides ikke med sikkerhed.

Trots de ubesværede spørgsmål, tegner der sig efterhånden et nogenlunde sammenhængende billede af den udviklingshistorie, som Ørkenens særprægede landskab afspejler. Mindst to perioder af klitdannelse har påvirket den hævede strandvoldslette; første gang mens den var ung og sandsynligvis endnu vegetationsløs, således at intens afblæsning forholdesvis let kunne jemte en betragtelig del af strandvoldsedimentet. Adskillige tusinder år senere dækkede området af en fyreskov, og da denne stabiliseringsfaktor forsvandt efter 1560, havde sandflugten frit spil til at mobilisere de gamle klitter, hvornimod afblæsning af strandvolde formentlig kun har haft begrænset betydning i denne periode.

Årsagen til den voldsomme sandflugt, som i 1600-tallet skabe grundlag for ørkenudveksel, skal formentlig findes i en kombination af menneskelige og na-
turlige faktorer, idet effekten af skovhugsten efter al sandsynlighed er blevet forsterket af "den lille istid", som bragte koldere og mere blæsende klima til størstedelen af Nordvesteuropa.

Indlandsklitterne på Anholt udgør til stadighed et geologisk set forholdvis uudforsket område, som kun ganske få har beskæftiget sig med siden Axel Jessens grundlæggende arbejde i 1897. Fremtidige undersøgelser vil først og fremmest søge at afdække spørgsmålet om klitternes alder ved hjælp af datering, for på den måde at kortlægge udviklingshistorien og derigennem opnå en bedre forståelse for, hvordan landskabet har fået sit karakteristiske udseende. Den særprægede morologi er endnu et punkt, hvor Ørkenens klitter adskiller sig fra klitforsømmerne i resten af landet, og måske ligger der en del af forklaaringen i det mulige tidsperspektiv på 5.000 år. De klittyper, som findes på Anholt, passer kun sjældent ind i en traditionel klassifikation på grund af deres komplekske, erosionsprægede morologi, og derfor vil noget af det fremtidige arbejde også bestå i at etablere en ny klassifikation. Andre vigtige, relativt uudforskehede faktorer, som i større eller mindre grad kan have betydning for klitmorologien, er blandt andet vindklima og vegetation. Derudover ville det være interessant at undersøge, hvorvidt sedimenterne eventuelt indeholder kjølemarking, for eksempel udtrykt ved korstørrelse eller geokemi, således at det bliver muligt at sætte Anholts klitter i relation til regionale, palæoklimatiske begivenheder.

Mange processer har haft betydning for udformningen af det klitlandskab, vi ser i dag (figur 10). Gennem adskillige tusind år har det været i kontinuerlig senere igen, hvilket betød, at vindhastigheden igen faldt, og at hele klitfeltet for ca. 4.500 år siden for første gang blev stabiliseret af indvandrende pionervegetation. Floraen blev med tiden mere varieret, og der dannedes en massiv jordbundshorisont. Denne jordbund svarede til den grønne reflektør på radargrammerne, og topografien af hele overfladen i området kan ses på figur 8. På kortet kan man se en bølgede overflade, der generelt holder ind mod land i den nordlige del. Der ses to højeddrag, et mod syd og et mod nord. Sammenholder man dette kort med kortet over til len og de marine sedimenter, kan man udlede,

Figur 8. Topografisk kort over den første stabiliseringsflade i klitfeltet. Det ses, at fladen generelt holder ind mod land, og at den består af to højeddrag med et lavliggende område imellem. Topografien i den sydlige del er styret af den undertiggende till, mens flyvesandsaflejringer er styrende i den nordlige del.
Bet en ca. 100 meter bred flod i en nordlig retning op igennem de to markante tillknelde og ud in mellem sandbankerne. Inden denne flod forsvandt, efterlod den en lang erosionskanal, der nu kan ses på kortet.

På et tidspunkt, for ca. 5.000 - 6.000 år siden, skete der en klimatisk ændring, der blandt andet resulterede i kraftigere vinde fra vest. Denne klimatiske forøring satte den første sandflugt i området i gang og store parabelklitter, magen til Råbjerg Mile på Skagen, byggede sig op, bevægede sig mod øst og dækkede hele området med flyvesand i løbet af få hundrede år. Klimaet ændrede sig

Figur 10. Et ny sandlegerne breder sig ud over det ældre klitlandskab nord for De Røde Miler. I baggrunden skintes Anholt fyr.

Nogle sedimentologiske udtryk

Betegnelsen **sand** bruges ofte i en ret bred betydning, men dækker principligt over et bestemt interval på komstørrelseskalaen. Dette interval går fra 0,06 millimeter til 2 millimeter og er yderligere underordnet, idet man almindeligvis skelner mellem fint, mellem og groft sand. Nogle skalaer har en finere inddeling med 5 sub-intervaller, som tilføjer benævnelsene meget fint og meget groft til de nævnte.

GEORADARKORTLÆGNING
AF HVIBDBJERG KYSTKLITFELT

Karsten Pedersen

Nord for Lodbjerg Fyr i det vestligste Thy ligger Hvidbjerg kystklitfelt, der mod vest er afgrænset af en stejl kystklinth (figur 1). Kystklinthen har, sammen med kystlinien ved Lodbjerg der ligger umiddelbart syd for, i mange år været en klassisk lokalitét for nye geologistuderende og andre interesserede, på grund af de tydelige blotninger af både till og flyvesand (se VARV 1989,4). Flyvesanden er delt op i enheder, der er afgrænset af mere eller mindre markante jordbundshorizontoner, som for de mest markanteks veedkommende strækker sig flere kilometer langs kystklinthen. Jordbundshorizonterne og flyvesanden er nu blevet kortlagt ind i land og korreleret til blotningerne i kystklinthen ved hjælp af georadarmetoden. Kortlegningen har været med til at give et meget mere detaljerede billede af den geologiske opbygning af kystklitfeltet.

GEORADARMETODEN

Georadar er en geofysisk målemetode, der registrerer lagfølger og strukturer i de øverste jordlag ved hjælp af elektromagnetiske bølger. Georadaren består af en afsenderantenne, en modtageraantenne og en kontrolenhed (figur 2). Den virker ved, at kontroelenhed giver signal til afsenderantennen om at udsende en kugleformet, elektromagnetisk bølge med en bestemt frekvens. En del af denne bølge bevæger sig ned igennem jorden, hvor den, ved en ændring i de øvre jordlags elektromagnetiske egenskaber, vil blive re-

Figur 1. Oversigtskort over Hvidbjerg kystklitfelt. På kortet er samtlige georadarlinjer vist med gult, mens udsnittonene præsenteres her er vist med rød.

Figur 6. Rødergram optaget i den sydlige del af Hvidbjerg kystklitfelt. Nederst ses till overflyvesand, der for den nederste, centrale dels vedkommende er aflæjet i en sp. De to nederste jordbundshorizonter dækker hele klitfeltet, mens den øverste kan ha lokal udbredelse. Grundvandspejlet ligger her ca. 3 meter under overfladen.

realt meget leret, så derfor er det ikke muligt at se interne strukturer i denne enhed. Man kan se, at tilloverfladen er meget bølget med et højdepunkt mod nordvest, en central fordybning og et jævn, fladt stykke mod sydøst. I den centrale fordybning over den grønne reflektor ses en ca. 3 meter tyk enhed, hvori der ikke er opnået nogen reflektorer. Denne enhed er tolket til at være flyvesand aflæjet i en sp, der har været i fordybningen i tilloverfladen. Over spæjslæringen ses en lagfølge af flyvesandsenheder, der er afgrænset af jordbundshorizonter. Den grønne og den gule reflektor kan korreleres til den grønne og den gule reflektor på figur 5 og repræsenterer jordbundshorizonter der dækker hele området, mens den røde reflektor illustrerer en jordbundshorizont, der kun har begrenset lateral udbredelse på nogle få hundrede meter. Grundvandsniveauet ligger i denne del af klitfeltet i ca. 3 meters dybde, hvilket betyder at det falder med ca. 2,5 meter over en strækning på 2,5 kilometer.

Ud fra tolkningen af de 16 kilometer georadarmarner er det blevet muligt at visualisere de øverste ca. 20 meter af den geologiske lagfølge ved Hvidbjerg kystklitfelt og fremstille topografiske kort over de mest markante horisonter nær den moderne overflade. Hvis man fjernede hele flyvesandsenheden ville man kunne se, hvordan området så ud for ca. 7,000 år siden (figur 7). Overfladen ville bestå af en meget bakket tilloverflade i den sydlige del i form af store, isolerede tickløde med dale imellem. Den døvende kystlinie ville gå i en mere nordøst-sydvestlig retning og være meget mere ujævnt end den nuværende. Udfør kysten ville der være en opbygning af oddekomplekser, der i nogle tilfælde ville ligge over havoverfladen og danne mindre sandbanker. Udfra de topografiske undersøgelser kan man også fornemme, at der muligvis har lø-
Figur 5. Radargram optaget vinkelret på den moderne kystlinie. Markante jordbundshorisonter er markeret med rød, grøn, gul og orange farve, mens grønseren mellem flyvesandet og marine sedimentene er markeret med lyseblå. De interne strukturer ses tydeligt på det mættede profiler. Grundvandsspejlet ligger lige under overfladen og indrømmingsdybden for georadar er her ca. 18 meter.

grenser op til Lodbjerg kystkliffelt. Lithogenen, markante horisonter og interne strukturer er korreleret og tolket udfra observationer i kystklinien, hvor man tydeligt kan se jordbundshorisonterne, og fra boringer udført umiddelbart ved siden af de visse radargrammer.

I den nordlige del af undersøgelsesområdet, i et strøg der går fra kystklinien og vinkelret ind i land (figur 1), kan man på radargrammet (figur 5) se fem markante og næsten horisontale reflektorer, der imellem sig har mindre, mere stejlt-hældende reflektorer. De fire øverste, markante reflektorer, vist med rød, grøn, gul og orange, repræsenterer jordbundshorisonter der på dannelsetidspunktet har stabiliseret flyvesandet og dermed forhindret videre sandflugt. De små reflektorer der ses indimellem, hælder alle mod øst og viser interne strukturer fra de bevarede vandreklitter, der i perioderne mellem stabiliseringerne bevegede sig mod øst, ind i land. Nederst på radargrammet ses både vest- og øst-hældende reflektorer. Disse reflektorer repræsenterer de interne strukturer i en strandvoldsbygning, der gik forud for sandflugten. Strandvoldene er tidbestemt til at være ca. 7.000 år gamle og dannet i forbindelse med den første Littorina-regression. Grønseren mellem marine sedimentern og flyvesandet er markeret med en lyseblå linie. Grundvandsniveauet lige her ligger ca. 0,5 meter under overfladen og er illustreret med en mørkeblå linie.

I den sydlige del af kystkliffellet, mellem kystklinien og Lodbjerg Fyr (figur 1), ca. 2,5 kilometer syd for det sted hvor radargrammet på figur 5 er optaget, kan der på radargrammet (figur 6) ses en kraftig reflektor i bunden af billedet, markeret med en brun linie, der mod nordvest ligger tæt ved overfladen. Denne reflektor korrelerer med overfladen af tillen, der ses i kystklinien. Tillen er gene-

Figur 2. Principskisse af (a) en georadaroptagelse og (b) billede af den registrerede elektromagnetiske bølge, hvor udvinsget på linien viser, at jordens elektromagnetiske egenskaber ændres ved grønseren mellem lag 1 og lag 2.

Da det er forskellige i jordagens elektromagnetiske egenskaber georadar optager, er det 'kun' et pseudo-profil af geologien i området man kan se. Grundvandsspejlet og mange ikke direkte geologiske objekter i undergrunden, såsom metal- og arkeologiske genstande, vil også kunne give ophav til refleksioner. Derudover vil også 'overjordiske objekter', f.eks. biler, træer og højspændingsledninger kunne blive optaget på radargrammet. Men da de elektromagnetiske egenskaber i jordens øverste lag generelt kan relateres til strukturelle og litologiske

variationer imellem sedimenterne, får man tydeligt et indtryk af den geologiske opbygning af de overfladenære jordlæg.

når, gør at den største dybde georadaren kan nå ned i på almindelig landjord er begrænset til ca. 50 meter under ideelle forhold. Oftest er indtrængningsdybden dog ikke mere end ca. 20 meter. I is kan indtrængningsdybden i modsætning hertil være flere hundrede meter.

Den tid, der går fra den elektromagnetiske bølge bliver udsendt til den bliver optaget igen, måles i nanosekunder (ns), hvilket svarer til milliardtedele af et sekund. Dette betyder, at den første dybdeskala man får, er i tid, som senere skal omregnes til meter for at give større mening. Den hastighed, hvormed den elektromagnetiske bølge bevæger sig, ændrer sig afhængigt af det materiale, den bevæger sig igennem. I luft bevæger bølgen sig med lysets hastighed, hvilket er 0,3 m/ns (meter pr. nanosekund), mens den i jord er væsentlig langsommere. I tørt sand og grus er hastigheden ca. 0,13 – 0,17 m/ns, mens den i vandmættet sand og grus er ca. 0,05 – 0,07 m/ns. Dette betyder, at såvel litologien som dybden til grundvandet er af stor betydning for omregningen af dybdeskalan fra tid til meter.

Når man har optaget et radargram og skal til at tolke resultatet, er det vigtigt at have en ide om de overfladenære jordlæg i det undersøgte område, da radargrammet ikke direkte fortæller noget om litologien, men kun noget om strukturerne i undergrunden. Sådan en viden kan man få fra boringer i nærheden eller fra fotografi profiler f.eks. ved kystkliner eller i grusgrave. Dette giver det meget nemmere at korrelerer bestemte geologiske laggrænser med markante reflektorer på radargrammet og dermed udarbejde en dannelseshistorie for området (figur 3).

Georadar-kortlægning af Hvidbjerg Kystklintfelt

Hvidbjerg kystklintfelt dækker et område på ca. 35 kvadratkilometer og består af en ca. 15 meter tyk lagfølge af flyvesandsenheder, der er afgrenset af jordbunds horisonter. Hele lagfølgen er aflejeret i Holocæn, dvs. perioden fra den sidste istid og til i dag. Under denne lagfølge ligger i den sydligste del en til (VARV 1989), der er aflejeret i forbindelse med den sidste istids fremstød til hoved stillstandslinien, der ligger ca. 30 kilometer syd for Hvidbjerg kystklintfelt. Sedimenterne umiddelbart under flyvesandet i den nordlige del består af marint sand aflejeret i små bugte, der blev dannet som fylde af isafsmeltningen i Skandinavien og på det nordamerikanske kontinent ved afslutningen af sidste istid. I den sydligste del af Hvidbjerg kystklintfelt er der indsamlet ca. 16 kilometer radargrammer i forbindelse med et geologisk kortlægningsprojekt af området. Tolkningen af radargrammerne har dannet baggrund for fremsættelsen af topo grafiske kort over de mest markante jordbunds horisonter. To eksempler på radargrammer fra undersøgelsen er vist på figur 5 og figur 6. Figur 5 er fra den midterste del af Hvidbjerg kystklintfelt, mens figur 6 er fra den sydligste del, der